Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuri K. Peterson is active.

Publication


Featured researches published by Yuri K. Peterson.


Nature Chemical Biology | 2012

Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy

R. David Sentelle; Can E. Senkal; Wenhui Jiang; Suriyan Ponnusamy; Salih Gencer; Shanmugam Panneer Selvam; Venkat K. Ramshesh; Yuri K. Peterson; John J. Lemasters; Zdzislaw M. Szulc; Jacek Bielawski; Besim Ogretmen

Mechanisms by which autophagy promotes cell survival or death are unclear. We provide evidence that C18-pyridinium ceramide (C18-Pyr-Cer) treatment, or endogenous C18-ceramide generation by ceramide synthase 1 (CerS1) expression mediates autophagic cell death, independent of apoptosis in human cancer cells. C18-ceramide-induced lethal autophagy was regulated via microtubule-associated protein 1 light chain 3 beta lipidation (LC3B-II) and selective targeting of mitochondria by LC3B-II-containing autophagolysosomes (mitophagy) through direct interaction between ceramide and LC3B-II upon Drp1-dependent mitochondrial fission, leading to inhibition of mitochondrial function and oxygen consumption. Accordingly, expression of mutant LC3B with impaired ceramide binding, as predicted by molecular modeling, prevented CerS1-mediated mitochondrial targeting, recovering oxygen consumption. Moreover, knockdown of CerS1 abrogated sodium selenite-induced mitophagy, and stable LC3B knockdown protected against CerS1-C18-ceramide-dependent mitophagy and blocked tumor suppression in vivo. Thus, these data suggest a novel receptor function of ceramide for anchoring LC3B-II-autophagolysosomes to mitochondrial membranes, defining a key mechanism for the induction of lethal mitophagy.


Journal of Biological Chemistry | 2000

Stabilization of the GDP-bound conformation of Gialpha by a peptide derived from the G-protein regulatory motif of AGS3

Yuri K. Peterson; Michael L. Bernard; Hongzheng Ma; Starr Hazard; Stephen G. Graber; Stephen M. Lanier

The G-protein regulatory (GPR) motif in AGS3 was recently identified as a region for protein binding to heterotrimeric G-protein α subunits. To define the properties of this ∼20-amino acid motif, we designed a GPR consensus peptide and determined its influence on the activation state of G-protein and receptor coupling to G-protein. The GPR peptide sequence (28 amino acids) encompassed the consensus sequence defined by the four GPR motifs conserved in the family of AGS3 proteins. The GPR consensus peptide effectively prevented the binding of AGS3 to Giα1,2 in protein interaction assays, inhibited guanosine 5′-O-(3-thiotriphosphate) binding to Giα, and stabilized the GDP-bound conformation of Giα. The GPR peptide had little effect on nucleotide binding to Goα and brain G-protein indicating selective regulation of Giα. Thus, the GPR peptide functions as a guanine nucleotide dissociation inhibitor for Giα. The GPR consensus peptide also blocked receptor coupling to Giαβγ indicating that although the AGS3-GPR peptide stabilized the GDP-bound conformation of Giα, this conformation of GiαGDPwas not recognized by a G-protein coupled receptor. The AGS3-GPR motif presents an opportunity for selective control of Giα- and Gβγ−regulated effector systems, and the GPR motif allows for alternative modes of signal input to G-protein signaling systems.


Embo Molecular Medicine | 2013

Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis

Sahar A. Saddoughi; Salih Gencer; Yuri K. Peterson; Katherine E. Ward; Archana Mukhopadhyay; Joshua J. Oaks; Jacek Bielawski; Zdzislaw M. Szulc; Raquela J. Thomas; Shanmugam Panneer Selvam; Can E. Senkal; Elizabeth Garrett-Mayer; Ryan M. De Palma; Dzmitry Fedarovich; Angen Liu; Amyn A. Habib; Robert V. Stahelin; Danilo Perrotti; Besim Ogretmen

Mechanisms that alter protein phosphatase 2A (PP2A)‐dependent lung tumour suppression via the I2PP2A/SET oncoprotein are unknown. We show here that the tumour suppressor ceramide binds I2PP2A/SET selectively in the nucleus and including its K209 and Y122 residues as determined by molecular modelling/simulations and site‐directed mutagenesis. Because I2PP2A/SET was found overexpressed, whereas ceramide was downregulated in lung tumours, a sphingolipid analogue drug, FTY720, was identified to mimick ceramide for binding and targeting I2PP2A/SET, leading to PP2A reactivation, lung cancer cell death, and tumour suppression in vivo. Accordingly, while molecular targeting of I2PP2A/SET by stable knockdown prevented further tumour suppression by FTY720, reconstitution of WT‐I2PP2A/SET expression restored this process. Mechanistically, targeting I2PP2A/SET by FTY720 mediated PP2A/RIPK1‐dependent programmed necrosis (necroptosis), but not by apoptosis. The RIPK1 inhibitor necrostatin and knockdown or genetic loss of RIPK1 prevented growth inhibition by FTY720. Expression of WT‐ or death‐domain‐deleted (DDD)‐RIPK1, but not the kinase‐domain‐deleted (KDD)‐RIPK1, restored FTY720‐mediated necroptosis in RIPK1−/− MEFs. Thus, these data suggest that targeting I2PP2A/SET by FTY720 suppresses lung tumour growth, at least in part, via PP2A activation and necroptosis mediated by the kinase domain of RIPK1.


Journal of Biological Chemistry | 2000

AGS3 Inhibits GDP Dissociation from Gα Subunits of the Gi Family and Rhodopsin-dependent Activation of Transducin

Michael Natochin; Brad Lester; Yuri K. Peterson; Michael L. Bernard; Stephen M. Lanier; Nikolai O. Artemyev

A number of recently discovered proteins that interact with the α subunits of Gi-like G proteins contain homologous repeated sequences named G protein regulatory (GPR) motifs. Activator of G protein signaling 3 (AGS3), identified as an activator of the yeast pheromone pathway in the absence of the pheromone receptor, has a domain with four such repeats. To elucidate the potential mechanisms of regulation of G protein signaling by proteins containing GPR motifs, we examined the effects of the AGS3 GPR domain on the kinetics of guanine nucleotide exchange and GTP hydrolysis by Giα1 and transducin-α (Gtα). The AGS3 GPR domain markedly inhibited the rates of spontaneous guanosine 5′-O-(3-thiotriphosphate) (GTPγS) binding to Giα and rhodopsin-stimulated GTPγS binding to Gtα. The full-length AGS3 GPR domain, AGS3-(463–650), was ∼30-fold more potent than AGS3-(572–629), containing two AGS3 GPR motifs. The IC50values for the AGS3-(463–650) inhibitory effects on Giα and transducin were 0.12 and 0.15 μm, respectively. Furthermore, AGS3-(463–650) and AGS3-(572–629) effectively blocked the GDP release from Giα and rhodopsin-induced dissociation of GDP from Gtα. The potencies of AGS3-(572–629) and AGS3-(463–650) to suppress the GDP dissociation rates correlated with their ability to inhibit the rates of GTPγS binding. Consistent with the inhibition of nucleotide exchange, the AGS3 GPR domain slowed the rate of steady-state GTP hydrolysis by Giα. The catalytic rate of Gtα GTP hydrolysis, measured under single turnover conditions, remained unchanged with the addition of AGS3-(463–650). Altogether, our results suggest that proteins containing GPR motifs, in addition to their potential role as G protein-coupled receptor-independent activators of Gβγ signaling pathways, act as GDP dissociation inhibitors and negatively regulate the activation of a G protein by a G protein-coupled receptor.


Nature | 2016

The conformational signature of β-arrestin2 predicts its trafficking and signalling functions

Mi-Hye Lee; Kathryn M. Appleton; Erik G. Strungs; Joshua Y. Kwon; Thomas A. Morinelli; Yuri K. Peterson; Stéphane A. Laporte; Louis M. Luttrell

Arrestins are cytosolic proteins that regulate G-protein-coupled receptor (GPCR) desensitization, internalization, trafficking and signalling. Arrestin recruitment uncouples GPCRs from heterotrimeric G proteins, and targets the proteins for internalization via clathrin-coated pits. Arrestins also function as ligand-regulated scaffolds that recruit multiple non-G-protein effectors into GPCR-based ‘signalsomes’. Although the dominant function(s) of arrestins vary between receptors, the mechanism whereby different GPCRs specify these divergent functions is unclear. Using a panel of intramolecular fluorescein arsenical hairpin (FlAsH) bioluminescence resonance energy transfer (BRET) reporters to monitor conformational changes in β-arrestin2, here we show that GPCRs impose distinctive arrestin ‘conformational signatures’ that reflect the stability of the receptor–arrestin complex and role of β-arrestin2 in activating or dampening downstream signalling events. The predictive value of these signatures extends to structurally distinct ligands activating the same GPCR, such that the innate properties of the ligand are reflected as changes in β-arrestin2 conformation. Our findings demonstrate that information about ligand–receptor conformation is encoded within the population average β-arrestin2 conformation, and provide insight into how different GPCRs can use a common effector for different purposes. This approach may have application in the characterization and development of functionally selective GPCR ligands and in identifying factors that dictate arrestin conformation and function.


PLOS ONE | 2012

Characterization of Isoenzyme-Selective Inhibitors of Human Sphingosine Kinases

Peng Gao; Yuri K. Peterson; Ryan A. Smith; Charles D. Smith

Sphingosine kinases (SKs) are promising new therapeutic targets for cancer because they regulate the balance between pro-apoptotic ceramides and mitogenic sphingosine-1-phosphate. The functions of the two SK isoenzymes, SK1 and SK2, are not redundant, with genetic ablation of SK2 having more pronounced anticancer effects than removal of SK1. Although several small molecule inhibitors of SKs have been described in the literature, detailed characterization of their molecular and cellular pharmacology, particularly their activities against human SK1 and SK2, have not been completed. Computational modeling of the putative active sites of SK1 and SK2 suggests structural differences that might allow isozyme-selective inhibitors. Therefore, we characterized several SK-inhibitory compounds which revealed differential inhibitory effects on SK1 and SK2 as follows: SKI-II and ABC294735 are SK1/2-dual inhibitors; CB5468139 is a SK1-selective inhibitor; and ABC294640 is a SK2-selective inhibitor. We examined the effects of the SK inhibitors on several biochemical and phenotypic processes in A498 kidney adenocarcinoma cells. The SK2-selective inhibitor ABC294640 demonstrated the most pronounced effects on SK1 and SK2 mRNA expression, decrease of S1P levels, elevation of ceramide levels, cell cycle arrest, and inhibition of proliferation, migration and invasion. ABC294640 also down-regulated the expression or activation of several signaling proteins, including STAT3, AKT, ERK, p21, p53 and FAK. These effects were equivalent or superior to responses to the SK1/2-dual inhibitors. Overall, these results suggest that inhibition of SK2 results in stronger anticancer effects than does inhibition of SK1 or both SK1 and SK2.


Journal of Pharmacology and Experimental Therapeutics | 2012

The β2-Adrenoceptor Agonist Formoterol Stimulates Mitochondrial Biogenesis

Lauren P. Wills; Richard E. Trager; Gyda C. Beeson; Christopher C. Lindsey; Yuri K. Peterson; Craig Beeson; Rick G. Schnellmann

Mitochondrial dysfunction is a common mediator of disease and organ injury. Although recent studies show that inducing mitochondrial biogenesis (MB) stimulates cell repair and regeneration, only a limited number of chemicals are known to induce MB. To examine the impact of the β-adrenoceptor (β-AR) signaling pathway on MB, primary renal proximal tubule cells (RPTC) and adult feline cardiomyocytes were exposed for 24 h to multiple β-AR agonists: isoproterenol (nonselective β-AR agonist), (±)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL 37344) (selective β3-AR agonist), and formoterol (selective β2-AR agonist). The Seahorse Biosciences (North Billerica, MA) extracellular flux analyzer was used to quantify carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)-uncoupled oxygen consumption rate (OCR), a marker of maximal electron transport chain activity. Isoproterenol and BRL 37244 did not alter mitochondrial respiration at any of the concentrations examined. Formoterol exposure resulted in increases in both FCCP-uncoupled OCR and mitochondrial DNA (mtDNA) copy number. The effect of formoterol on OCR in RPTC was inhibited by the β-AR antagonist propranolol and the β2-AR inverse agonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol hydrochloride (ICI-118,551). Mice exposed to formoterol for 24 or 72 h exhibited increases in kidney and heart mtDNA copy number, peroxisome proliferator-activated receptor γ coactivator 1α, and multiple genes involved in the mitochondrial electron transport chain (F0 subunit 6 of transmembrane F-type ATP synthase, NADH dehydrogenase subunit 1, NADH dehydrogenase subunit 6, and NADH dehydrogenase [ubiquinone] 1β subcomplex subunit 8). Cheminformatic modeling, virtual chemical library screening, and experimental validation identified nisoxetine from the Sigma Library of Pharmacologically Active Compounds and two compounds from the ChemBridge DIVERSet that increased mitochondrial respiratory capacity. These data provide compelling evidence for the use and development of β2-AR ligands for therapeutic MB.


Science Signaling | 2015

Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation

Shanmugam Panneer Selvam; Ryan M. De Palma; Joshua J. Oaks; Natalia V. Oleinik; Yuri K. Peterson; Robert V. Stahelin; Emmanuel Skordalakes; Suriyan Ponnusamy; Elizabeth Garrett-Mayer; Charles D. Smith; Besim Ogretmen

Sphingosine 1-phosphate binds and stabilizes telomerase, a process that could be targeted to promote senescence and reduce cancer growth. Telomerase stabilized by a sphingolipid In normal adult cells, the structure at the ends of chromosomes, called the telomere, becomes progressively shorter with each replication cycle. When telomeres get too short or damaged, the cell stops dividing and becomes senescent. The enzyme telomerase maintains the integrity of telomeres, and phosphorylation stabilizes the catalytic subunit (called TERT) of this enzyme. In both normal fibroblasts and lung cancer cells, Panneer Selvam et al. found that binding of the phospholipid S1P to TERT mimicked protein phosphorylation and prevented TERT degration. Disrupting the interaction between S1P and TERT by either depleting S1P or mutating the interaction site in TERT impaired telomere maintenance and promoted senescence in cultured cells and decreased the growth of lung cancer cell xenografts in mice. During DNA replication, the enzyme telomerase maintains the ends of chromosomes, called telomeres. Shortened telomeres trigger cell senescence, and cancer cells often have increased telomerase activity to promote their ability to proliferate indefinitely. The catalytic subunit, human telomerase reverse transcriptase (hTERT), is stabilized by phosphorylation. We found that the lysophospholipid sphingosine 1-phosphate (S1P), generated by sphingosine kinase 2 (SK2), bound hTERT at the nuclear periphery in human and mouse fibroblasts. Docking predictions and mutational analyses revealed that binding occurred between a hydroxyl group (C′3-OH) in S1P and Asp684 in hTERT. Inhibiting or depleting SK2 or mutating the S1P binding site decreased the stability of hTERT in cultured cells and promoted senescence and loss of telomere integrity. S1P binding inhibited the interaction of hTERT with makorin ring finger protein 1 (MKRN1), an E3 ubiquitin ligase that tags hTERT for degradation. Murine Lewis lung carcinoma (LLC) cells formed smaller tumors in mice lacking SK2 than in wild-type mice, and knocking down SK2 in LLC cells before implantation into mice suppressed their growth. Pharmacologically inhibiting SK2 decreased the growth of subcutaneous A549 lung cancer cell–derived xenografts in mice, and expression of wild-type hTERT, but not an S1P-binding mutant, restored tumor growth. Thus, our data suggest that S1P binding to hTERT allosterically mimicks phosphorylation, promoting telomerase stability and hence telomere maintenance, cell proliferation, and tumor growth.


Pharmacological Reviews | 2017

The Diverse Roles of Arrestin Scaffolds in G Protein–Coupled Receptor Signaling

Yuri K. Peterson; Louis M. Luttrell

The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein–coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure–function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.


Biochemical Journal | 2012

Bax and Bcl-xL exert their regulation on different sites of the ceramide channel.

Meenu N. Perera; Shang H. Lin; Yuri K. Peterson; Alicja Bielawska; Zdzislaw M. Szulc; Robert Bittman; Marco Colombini

The present study demonstrates the important structural features of ceramide required for proper regulation, binding and identification by both pro-apoptotic and anti-apoptotic Bcl-2 family proteins. The C-4=C-5 trans-double bond has little influence on the ability of Bax and Bcl-xL to identify and bind to these channels. The stereochemistry of the headgroup and access to the amide group of ceramide is indispensible for Bax binding, indicating that Bax may interact with the polar portion of the ceramide channel facing the bulk phase. In contrast, Bcl-xL binding to ceramide channels is tolerant of stereochemical changes in the headgroup. The present study also revealed that Bcl-xL has an optimal interaction with long-chain ceramides that are elevated early in apoptosis, whereas short-chain ceramides are not well regulated. Inhibitors specific for the hydrophobic groove of Bcl-xL, including 2-methoxyantimycin A3, ABT-737 and ABT-263 provide insights into the region of Bcl-xL involved in binding to ceramide channels. Molecular docking simulations of the lowest-energy binding poses of ceramides and Bcl-xL inhibitors to Bcl-xL were consistent with the results of our functional studies and propose potential binding modes.

Collaboration


Dive into the Yuri K. Peterson's collaboration.

Top Co-Authors

Avatar

Kathryn M. Appleton

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Louis M. Luttrell

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Craig Beeson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Mi-Hye Lee

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas A. Morinelli

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Christopher C. Lindsey

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Richard E. Trager

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Lanier

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Alena Fedarovich

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge