Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lavinia Casati is active.

Publication


Featured researches published by Lavinia Casati.


Toxicology and Applied Pharmacology | 2009

Chronic treatment with polychlorinated biphenyls (PCB) during pregnancy and lactation in the rat Part 2: Effects on reproductive parameters, on sex behavior, on memory retention and on hypothalamic expression of aromatase and 5alpha-reductases in the offspring.

Alessandra Colciago; Lavinia Casati; O. Mornati; Anna Valeria Vergoni; A. Santagostino; Fabio Celotti; Paola Negri-Cesi

The gender-specific expression pattern of aromatase and 5alpha-reductases (5alpha-R) during brain development provides neurons the right amount of estradiol and DHT to induce a dimorphic organization of the structure. Polychlorinated biphenyls (PCBs) are endocrine disruptive pollutants; exposure to PCBs through placental transfer and breast-feeding may adversely affect the organizational action of sex steroid, resulting in long-term alteration of reproductive neuroendocrinology. The study was aimed at: a) evaluating the hypothalamic expression of aromatase, 5alpha-R1 and 5alpha-R2 in fetuses (GD20), infant (PN12), weaning (PN21) and young adult (PN60) male and female rats exposed to PCBs during development; b) correlating these parameters with the time of testicular descent, puberty onset, estrous cyclicity and copulatory behavior; c) evaluating possible alterations of some non reproductive behaviors (locomotion, learning and memory, depression/anxiety behavior). A reconstituted mixture of four indicator congeners (PCB 126, 138, 153 and 180) was injected subcutaneously to dams at the dose of 10 mg/kg daily from GD15 to GD19 and then twice a week till weanling. The results indicated that developmental PCB exposure produced important changes in the dimorphic hypothalamic expression of both aromatase and the 5alpha-Rs, which were still evident in adult animals. We observed that female puberty onset occurs earlier than in control animals without cycle irregularity, while testicular descent in males was delayed. A slight but significant impairment of sexual behavior and an important alteration in memory retention were also noted specifically in males. We conclude that PCBs might affect the dimorphic neuroendocrine control of reproductive system and of other neurobiological processes.


The Journal of Steroid Biochemistry and Molecular Biology | 2008

Sexual differentiation of the rodent hypothalamus: hormonal and environmental influences.

Paola Negri-Cesi; Alessandra Colciago; A. Pravettoni; Lavinia Casati; Luciano Conti; Fabio Celotti

Brain sexual differentiation is a complex developmental phenomenon influenced by the genetic background, sex hormone secretions and environmental inputs, including pollution. The main hormonal drive to masculinize and defeminize the rodent brain is testosterone secreted by the testis. The hormone does not influence sex brain differentiation only in its native configuration, but it mostly needs local conversion into active metabolites (estradiol and DHT) through the action of specific enzymatic systems: the aromatase and 5alpha-reductase (5alpha-R), respectively. This allows the hormone to control target cell gene expression either through the estrogen (ER) or the androgen (AR) receptors. The developmental profile of testosterone metabolizing enzymes, different in the two sexes, is therefore of the utmost importance in affecting the bioavailability of the steroids active in brain differentiation. Widely diffused pollutants, like polychlorinated biphenyls (PCBs) are able to affect the production and/or action of testosterone metabolites, exerting detrimental influences on reproduction and sex behavior. The main studies performed in our and other laboratories concerning the pattern of expression and the control of the enzymatic systems involved in brain androgen action and metabolism are shortly reviewed. Some recent data on the influence exerted by PCBs on these metabolic systems are also reported.


Frontiers in Cell and Developmental Biology | 2015

Endocrine disrupters: the new players able to affect the epigenome

Lavinia Casati; Ramon Sendra; Valeria Sibilia; Fabio Celotti

Epigenetics represents the way by which the environment is able to program the genome; there are three main levels of epigenetic control on genome: DNA methylation, post-translational histone modification and microRNA expression. The term Epigenetics has been widened by NIH to include “both heritable changes in gene activity and expression but also stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable.” These changes might be produced mostly by the early life environment and might affect health influencing the susceptibility to develop diseases, from cancer to mental disorder, during the entire life span. The most studied environmental influences acting on epigenome are diet, infections, wasting, child care, smoking and environmental pollutants, in particular endocrine disrupters (EDs). These are environmental xenobiotics able to interfere with the normal development of the male and female reproductive systems of wildlife, of experimental animals and possibly of humans, disrupting the normal reproductive functions. Data from literature indicate that EDs can act at different levels of epigenetic control, in some cases transgenerationally, in particular when the exposure to these compounds occurs during the prenatal and earliest period of life. Some of the best characterized EDs will be considered in this review. Among the EDs, vinclozolin (VZ), and methoxychlor (MXC) promote epigenetic transgenerational effects. Polychlorinated biphenils (PCBs), the most widespread environmental EDs, affect histone post-translational modifications in a dimorphic way, possibly as the result of an alteration of gene expression of the enzymes involved in histone modification, as the demethylase Jarid1b, an enzyme also involved in regulating the interaction of androgens with their receptor.


Epigenetics | 2013

Androgen receptor activation by polychlorinated biphenyls: Epigenetic effects mediated by the histone demethylase Jarid1b

Lavinia Casati; Ramon Sendra; Angelo Poletti; Paola Negri-Cesi; Fabio Celotti

The exposure to environmental endocrine disrupting compounds (EDC), as polychlorinated biphenyls (PCBs), widely diffused in the environment may produce epigenetic changes that affect the endocrine system. We found that PCBs activate AR transcriptional activity and that this effect is potentiated by the demethylase Jarid1b, a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by PCB. The aim of the present study was to investigate the effect of the treatment of cultured cells (HEK293) with a mixture of the most diffused environmental PCBs and, also with dihydrotestosterone (DHT), on the functional interaction between AR and Jarid1b. Although the effect induced by DHT on the AR transactivation was considerably higher, the PCB mixture produced an AR-mediated transactivation in a dose-dependent manner. Cotransfection with plasmids expressing Jarid1b and various AR isoforms containing polyglutamine tracts (polyQ tracts) of different lengths showed that Jarid1b potentiates the AR transcriptional activity induced by PCBs but only with the shortest AR isoform. The potentiating effect of Jarid1b on the AR is mediated by a direct interaction of the enzyme with the AR promoter. In fact, utilizing constructs containing AR promoters with a different length and a luciferase reporter gene, we showed that the effect of PCBs, but not of DHT, needs the presence of Jarid1b and of at least two DNA binding sites for Jarid1b.


The Journal of Steroid Biochemistry and Molecular Biology | 2015

Learning and memory: Steroids and epigenetics

Alessandra Colciago; Lavinia Casati; Paola Negri-Cesi; Fabio Celotti

Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation.


Epigenomics | 2012

Polychlorinated biphenyls affect histone modification pattern in early development of rats: a role for androgen receptor-dependent modulation?

Lavinia Casati; Ramon Sendra; Alessandra Colciago; Paola Negri-Cesi; María Berdasco; Manel Esteller; Fabio Celotti

BACKGROUND The epigenome represents an important target of environmental pollution. Early-life exposure to polychlorinated biphenyls (PCBs) modifies sex steroid enzymes and receptor transcription patterns. Steroid receptors, such as androgen receptor (AR), function as coregulators of histone modification enzymes. AIM To clarify if a PCB early-life exposure might affect the epigenome in rat liver, we analyzed some histone post-translational modifications (H3K4me3 and H4K16Ac) and the corresponding histone remodeling enzymes, and the AR as a histone enzyme coregulator. RESULTS We observed a decrease of H4K16Ac and H3K4me3 levels, possibly linked to the induction of chromatin-modifying enzymes SirtT1 and Jarid1b, and a decrease of AR. PCBs also seem to induce AR transcriptional activity. Some of the observed effects are sex dimorphic. CONCLUSION Our data suggest that an early-life exposure to PCB sometimes modifies the epigenome in the offspring liver in a dimorphic way. AR might be involved in modulating PCB effects on the epigenome.


Cell Adhesion & Migration | 2014

Platelet derived growth factor (PDGF) contained in Platelet Rich Plasma (PRP) stimulates migration of osteoblasts by reorganizing actin cytoskeleton

Lavinia Casati; Fabio Celotti; Paola Negri-Cesi; Maria Cristina Sacchi; Paolo Castano; Alessandra Colciago

Platelet-rich plasma (PRP) is a platelet concentrate in a small volume of plasma. It is highly enriched in growth factors able to stimulate the migration and growth of bone-forming cells. PRP is often used in clinical applications, as dental surgery and fracture healing. Platelet derived growth factor (PDGF), is highly concentrated in PRP and it was shown in our previous studies to provide the chemotactic stimulus to SaOS-2 osteoblasts to move in a microchemotaxis assay. Aim of the present studies is to analyze the effects of a PRP pretreatment (short time course: 30–150 min) of SaOS-2 cells with PRP on the organization of actin cytoskeleton, the main effector of cell mobility. The results indicate that a pretreatment with PRP increases chemokinesis and chemotaxis and concomitantly induces the organization of actin microfilaments, visualized by immunocytochemistry, in a directionally elongated phenotype, which is characteristic of the cells able to move. PRP also produces a transient increase in the expression of PGDF α receptor. This reorganization is blocked by the immunoneutralization of PDGF demonstrating the responsibility of this growth factor in triggering the mechanisms responsible for cellular movements.


PLOS ONE | 2015

Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines.

Monica Marzagalli; Lavinia Casati; Roberta M. Moretti; Marina Montagnani Marelli; Patrizia Limonta

Background Cutaneous melanoma is an aggressive malignancy; its incidence is increasing worldwide and its prognosis remains poor. Clinical observations indicate that estrogen receptor β (ERβ) is expressed in melanoma tissues and its expression decreases with tumor progression, suggesting its tumor suppressive function. These experiments were performed to investigate the effects of ERβ activation on melanoma cell growth. Methods and Results Protein expression was analyzed by Western blot and immunofluorescence assays. Cell proliferation was assessed by counting the cells by hemocytometer. ERβ transcriptional activity was evaluated by gene reporter assay. Global DNA methylation was analyzed by restriction enzyme assay and ERβ isoforms were identified by qRT-PCR. We demonstrated that ERβ is expressed in a panel of human melanoma cell lines (BLM, WM115, A375, WM1552). In BLM (NRAS-mutant) cells, ERβ agonists significantly and specifically inhibited cell proliferation. ERβ activation triggered its cytoplasmic-to-nuclear translocation and transcriptional activity. Moreover, the antiproliferative activity of ERβ agonists was associated with an altered expression of G1-S transition-related proteins. In these cells, global DNA was found to be hypomethylated when compared to normal melanocytes; this DNA hypomethylation status was reverted by ERβ activation. ERβ agonists also decreased the proliferation of WM115 (BRAF V600D-mutant) cells, while they failed to reduce the growth of A375 and WM1552 (BRAF V600E-mutant) cells. Finally, we could observe that ERβ isoforms are expressed at different levels in the various cell lines. Specific oncogenic mutations or differential expression of receptor isoforms might be responsible for the different responses of cell lines to ERβ agonists. Conclusions Our results demonstrate that ERβ is expressed in melanoma cell lines and that ERβ agonists differentially regulate the proliferation of these cells. These data confirm the notion that melanoma is a heterogeneous tumor and that genetic profiling is mandatory for the development of effective personalized therapeutic approaches for melanoma patients.


Scientific Reports | 2016

Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

Marina Montagnani Marelli; Monica Marzagalli; Roberta M. Moretti; Giangiacomo Beretta; Lavinia Casati; Raffaella Comitato; Giovanni Luca Gravina; Claudio Festuccia; Patrizia Limonta

Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma.


International Journal of Cancer | 2018

Roadmap for investigating epigenome deregulation and environmental origins of cancer.

Zdenko Herceg; Akram Ghantous; Christopher P. Wild; Athena Sklias; Lavinia Casati; Susan J. Duthie; Rebecca C. Fry; Jean-Pierre Issa; Richard Kellermayer; Igor Koturbash; Yukata Kondo; Johanna Lepeule; Sheila C.S. Lima; Carmen J. Marsit; Vardhman K. Rakyan; Richard Saffery; Jack A. Taylor; Andrew E. Teschendorff; Toshikazu Ushijima; Paolo Vineis; Cheryl L. Walker; Robert A. Waterland; Joseph L. Wiemels; Srikant Ambatipudi; Davide Degli Esposti; Hector Hernandez-Vargas

The interaction between the (epi)genetic makeup of an individual and his/her environmental exposure record (exposome) is accepted as a determinant factor for a significant proportion of human malignancies. Recent evidence has highlighted the key role of epigenetic mechanisms in mediating gene–environment interactions and translating exposures into tumorigenesis. There is also growing evidence that epigenetic changes may be risk factor‐specific (“fingerprints”) that should prove instrumental in the discovery of new biomarkers in cancer. Here, we review the state of the science of epigenetics associated with environmental stimuli and cancer risk, highlighting key developments in the field. Critical knowledge gaps and research needs are discussed and advances in epigenomics that may help in understanding the functional relevance of epigenetic alterations. Key elements required for causality inferences linking epigenetic changes to exposure and cancer are discussed and how these alterations can be incorporated in carcinogen evaluation and in understanding mechanisms underlying epigenome deregulation by the environment.

Collaboration


Dive into the Lavinia Casati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge