Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Marzagalli is active.

Publication


Featured researches published by Monica Marzagalli.


Human Reproduction Update | 2016

GnRH and GnRH receptors in the pathophysiology of the human female reproductive system

Roberto Maggi; Anna Cariboni; Marina Montagnani Marelli; Roberta M. Moretti; Valentina Andre; Monica Marzagalli; Patrizia Limonta

BACKGROUND Human reproduction depends on an intact hypothalamic-pituitary-gonadal (HPG) axis. Hypothalamic gonadotrophin-releasing hormone (GnRH) has been recognized, since its identification in 1971, as the central regulator of the production and release of the pituitary gonadotrophins that, in turn, regulate the gonadal functions and the production of sex steroids. The characteristic peculiar development, distribution and episodic activity of GnRH-producing neurons have solicited an interdisciplinary interest on the etiopathogenesis of several reproductive diseases. The more recent identification of a GnRH/GnRH receptor (GnRHR) system in both the human endometrium and ovary has widened the spectrum of action of the peptide and of its analogues beyond its hypothalamic function. METHODS An analysis of research and review articles published in international journals until June 2015 has been carried out to comprehensively summarize both the well established and the most recent knowledge on the physiopathology of the GnRH system in the central and peripheral control of female reproductive functions and diseases. RESULTS This review focuses on the role of GnRH neurons in the control of the reproductive axis. New knowledge is accumulating on the genetic programme that drives GnRH neuron development to ameliorate the diagnosis and treatment of GnRH deficiency and consequent delayed or absent puberty. Moreover, a better understanding of the mechanisms controlling the episodic release of GnRH during the onset of puberty and the ovulatory cycle has enabled the pharmacological use of GnRH itself or its synthetic analogues (agonists and antagonists) to either stimulate or to block the gonadotrophin secretion and modulate the functions of the reproductive axis in several reproductive diseases and in assisted reproduction technology. Several inputs from other neuronal populations, as well as metabolic, somatic and age-related signals, may greatly affect the functions of the GnRH pulse generator during the female lifespan; their modulation may offer new possible strategies for diagnostic and therapeutic interventions. A GnRH/GnRHR system is also expressed in female reproductive tissues (e.g. endometrium and ovary), both in normal and pathological conditions. The expression of this system in the human endometrium and ovary supports its physiological regulatory role in the processes of trophoblast invasion of the maternal endometrium and embryo implantation as well as of follicular development and corpus luteum functions. The GnRH/GnRHR system that is expressed in diseased tissues of the female reproductive tract (both benign and malignant) is at present considered an effective molecular target for the development of novel therapeutic approaches for these pathologies. GnRH agonists are also considered as a promising therapeutic approach to counteract ovarian failure in young female patients undergoing chemotherapy. CONCLUSIONS Increasing knowledge about the regulation of GnRH pulsatile release, as well as the therapeutic use of its analogues, offers interesting new perspectives in the diagnosis, treatment and outcome of female reproductive disorders, including tumoral and iatrogenic diseases.


PLOS ONE | 2015

Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines.

Monica Marzagalli; Lavinia Casati; Roberta M. Moretti; Marina Montagnani Marelli; Patrizia Limonta

Background Cutaneous melanoma is an aggressive malignancy; its incidence is increasing worldwide and its prognosis remains poor. Clinical observations indicate that estrogen receptor β (ERβ) is expressed in melanoma tissues and its expression decreases with tumor progression, suggesting its tumor suppressive function. These experiments were performed to investigate the effects of ERβ activation on melanoma cell growth. Methods and Results Protein expression was analyzed by Western blot and immunofluorescence assays. Cell proliferation was assessed by counting the cells by hemocytometer. ERβ transcriptional activity was evaluated by gene reporter assay. Global DNA methylation was analyzed by restriction enzyme assay and ERβ isoforms were identified by qRT-PCR. We demonstrated that ERβ is expressed in a panel of human melanoma cell lines (BLM, WM115, A375, WM1552). In BLM (NRAS-mutant) cells, ERβ agonists significantly and specifically inhibited cell proliferation. ERβ activation triggered its cytoplasmic-to-nuclear translocation and transcriptional activity. Moreover, the antiproliferative activity of ERβ agonists was associated with an altered expression of G1-S transition-related proteins. In these cells, global DNA was found to be hypomethylated when compared to normal melanocytes; this DNA hypomethylation status was reverted by ERβ activation. ERβ agonists also decreased the proliferation of WM115 (BRAF V600D-mutant) cells, while they failed to reduce the growth of A375 and WM1552 (BRAF V600E-mutant) cells. Finally, we could observe that ERβ isoforms are expressed at different levels in the various cell lines. Specific oncogenic mutations or differential expression of receptor isoforms might be responsible for the different responses of cell lines to ERβ agonists. Conclusions Our results demonstrate that ERβ is expressed in melanoma cell lines and that ERβ agonists differentially regulate the proliferation of these cells. These data confirm the notion that melanoma is a heterogeneous tumor and that genetic profiling is mandatory for the development of effective personalized therapeutic approaches for melanoma patients.


Scientific Reports | 2016

Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

Marina Montagnani Marelli; Monica Marzagalli; Roberta M. Moretti; Giangiacomo Beretta; Lavinia Casati; Raffaella Comitato; Giovanni Luca Gravina; Claudio Festuccia; Patrizia Limonta

Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma.


Frontiers in Endocrinology | 2016

Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility

Monica Marzagalli; Marina Montagnani Marelli; Lavinia Casati; Fabrizio Fontana; Roberta M. Moretti; Patrizia Limonta

Cutaneous melanoma is an aggressive tumor; its incidence has been reported to increase fast in the past decades. Melanoma is a heterogeneous tumor, with most patients harboring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on therapies targeting mutated BRAF and the downstream pathway, and on monoclonal antibodies against the immune checkpoint blockade. However, treatment resistance and side effects are common events of these therapeutic strategies. Increasing evidence supports that melanoma is a hormone-related cancer. Melanoma incidence is higher in males than in females, and females have a significant survival advantage over men. Estrogens exert their effects through estrogen receptors (ERα and ERβ) that affect cancer growth in an opposite way: ERα is associated with a proliferative action and ERβ with an anticancer effect. ERβ is the predominant ER in melanoma, and its expression decreases in melanoma progression, supporting its role as a tumor suppressor. Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 17β-estradiol was reported to inhibit melanoma cells proliferation; however, clinical trials did not provide the expected survival benefits. In vitro studies demonstrate that ERβ ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF) mutation, suggesting that ERβ activation might impair melanoma development through the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be considered as an effective treatment strategy, in combination with MAPK inhibitors, for NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of the expression of ER isoforms together with the concurrent oncogenic mutations should be considered before selecting the most appropriate therapeutic intervention. Natural compounds that specifically bind to ERβ have been identified. These phytoestrogens decrease the proliferation of melanoma cells. Importantly, these effects are unrelated to the oncogenic mutations of melanomas, suggesting that, in addition to their ERβ activating function, these compounds might impair melanoma development through additional mechanisms. A better identification of the role of ERβ in melanoma development will help increase the therapeutic options for this aggressive pathology.


PLOS ONE | 2014

Gonadotropin-Releasing Hormone Agonists Sensitize, and Resensitize, Prostate Cancer Cells to Docetaxel in a p53-Dependent Manner

Roberta M. Moretti; Marina Montagnani Marelli; D. Taylor; Paolo Martini; Monica Marzagalli; Patrizia Limonta

Gonadotropin-releasing hormone (GnRH) receptors are expressed in prostate cancer, specifically in the most aggressive stage of the tumor (castration-resistant prostate cancer, CRPC) for which the standard treatment, docetaxel-based chemotherapy, can only improve the median survival time by few months. We previously showed that GnRH agonists exert an antitumor activity in CRPC cells; however, a link between GnRH receptors and the apoptotic machinery remains to be defined. Aim of this study was to evaluate whether, in CRPC cells, GnRH agonists might affect the expression/activity of apoptosis-related proteins and might sensitize, or resensitize, cancer cells to chemotherapeutics. We demonstrated that, in p53-positive DU145 cells, GnRH agonists: a) increase the expression of the proapoptotic protein Bax; this effect is mediated by the phosphorylation (activation) of p53, triggered by the p38 MAPK; b) potentiate the antiproliferative/proapoptotic activity of docetaxel; c) resensitize docetaxel-resistant cells to the antitumor activity of the cytotoxic drug. These data indicate that GnRH agonists sensitize and, more importantly, resensitize DU145 CRPC cells to chemotherapy in a p53-dependent manner. To confirm the crucial role of p53 in the activity of GnRH agonists, experiments were performed in p53-null PC3 cells. We found that GnRH agonists fail to increase Bax expression and do not potentiate the cytotoxic activity of docetaxel. These results may provide a rationale for novel combination treatment strategies, especially for docetaxel-resistant CRPC patients expressing a functional p53 protein.


Recent Patents on Anti-cancer Drug Discovery | 2014

Targeting hormonal signaling pathways in castration resistant prostate cancer.

Marilena Manea; Marina Montagnani Marelli; Roberta M. Moretti; Roberto Maggi; Monica Marzagalli; Patrizia Limonta

It is now well established that hormonal pathways are involved in the development of prostate cancer towards the castration resistant (CRPC) stage and can be effective molecular targets for novel treatment strategies. Most CRPC are sensitive to androgens and this can be due to the intratumoral production of androgens, androgen receptor (AR) amplification/ mutations and epigenetic modifications of AR expression/signaling. Based on these observations, potent agents targeting the AR axis were developed: 1) inhibitors of CYP17 (a key enzyme in the production of androgens), such as abiraterone and orteronel; 2) AR antagonists that bind to AR and impair AR activation, such as enzalutamide and ARN-509. Moreover, gonadotropin-releasing hormone receptors (GnRH-R), associated with a strong antitumor activity, are expressed in CRPC cells, indicating that they might represent an important target for GnRH analog-based therapeutic strategies. In addition to GnRH agonists and antagonists (i.e., degarelix), cytotoxic GnRH-based bioconjugates, delivering chemotherapeutic drugs to cancer cells expressing the GnRH-R, were developed and reported to exert antitumor effects on CRPC cells; some of them (i.e., AN-152) have already entered clinical trials. This review discusses the most relevant patents and recent observations on the anti-cancer efficacy of novel drugs targeting the AR and the GnRH-R pathways in CRPC.


Scientific Reports | 2018

Targeting melanoma stem cells with the Vitamin E derivative δ-tocotrienol

Monica Marzagalli; Roberta M. Moretti; Elio Messi; Marina Montagnani Marelli; Fabrizio Fontana; Alessia Anastasia; Maria Rosa Bani; Giangiacomo Beretta; Patrizia Limonta

The prognosis of metastatic melanoma is very poor, due to the development of drug resistance. Cancer stem cells (CSCs) may play a crucial role in this mechanism, contributing to disease relapse. We first characterized CSCs in melanoma cell lines. We observed that A375 (but not BLM) cells are able to form melanospheres and show CSCs traits: expression of the pluripotency markers SOX2 and KLF4, higher invasiveness and tumor formation capability in vivo with respect to parental adherent cells. We also showed that a subpopulation of autofluorescent cells expressing the ABCG2 stem cell marker is present in the A375 spheroid culture. Based on these data, we investigated whether δ-TT might target melanoma CSCs. We demonstrated that melanoma cells escaping the antitumor activity of δ-TT are completely devoid of the ability to form melanospheres. In contrast, cells that escaped vemurafenib treatment show a higher ability to form melanospheres than control cells. δ-TT also induced disaggregation of A375 melanospheres and reduced the spheroidogenic ability of sphere-derived cells, reducing the expression of the ABCG2 marker. These data demonstrate that δ-TT exerts its antitumor activity by targeting the CSC subpopulation of A375 melanoma cells and might represent a novel chemopreventive/therapeutic strategy against melanoma.


Archive | 2018

GnRH in the Human Female Reproductive Axis

Patrizia Limonta; Marina Montagnani Marelli; Roberta M. Moretti; Monica Marzagalli; Fabrizio Fontana; Roberto Maggi

Gonadotropin-releasing hormone (GnRH) is recognized as the central regulator of the functions of the pituitary-gonadal axis. The increasing knowledge on the mechanisms controlling the development and the function of GnRH-producing neurons is leading to a better diagnostic and therapeutic approach for hypogonadotropic hypogonadisms and for alterations of the puberty onset. During female life span, the function of the GnRH pulse generator may be affected by a number of inputs from other neuronal systems, offering alternative strategies for diagnostic and therapeutic interventions. Moreover, the identification of a GnRH/GnRH receptor system in both human ovary and endometrium has widened the spectrum of action of the peptide outside its hypothalamic functions. The pharmacological use of GnRH itself or its synthetic analogs (agonists and antagonists) provides a valid tool to either stimulate or block gonadotropin secretion and to modulate the female fertility in several reproductive disorders and in assisted reproduction technology. The use of GnRH agonists in young female patients undergoing chemotherapy is also considered a promising therapeutic approach to counteract iatrogenic ovarian failure.


Journal of Cellular Physiology | 2018

Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets: MARELLI et al.

Marina Montagnani Marelli; Monica Marzagalli; Fabrizio Fontana; Michela Raimondi; Roberta M. Moretti; Patrizia Limonta

Vitamin E is composed of two groups of compounds: α‐, β‐, γ‐, and δ‐tocopherols (TPs), and the corresponding unsaturated tocotrienols (TTs). TTs are found in natural sources such as red palm oil, annatto seeds, and rice bran. In the last decades, TTs (specifically, γ‐TT and δ‐TT) have gained interest due to their health benefits in chronic diseases, based on their antioxidant, neuroprotective, cholesterol‐lowering, anti‐inflammatory activities. Several in vitro and in vivo studies pointed out that TTs also exert a significant antitumor activity in a wide range of cancer cells. Specifically, TTs were shown to exert antiproliferative/proapoptotic effects and to reduce the metastatic or angiogenic properties of different cancer cells; moreover, these compounds were reported to specifically target the subpopulation of cancer stem cells, known to be deeply involved in the development of resistance to standard therapies. Interestingly, recent studies pointed out that TTs exert a synergistic antitumor effect on cancer cells when given in combination with either standard antitumor agents (i.e., chemotherapeutics, statins, “targeted” therapies) or natural compounds with anticancer activity (i.e., sesamin, epigallocatechin gallate (EGCG), resveratrol, ferulic acid). Based on these observations, different TT synthetic derivatives and formulations were recently developed and demonstrated to improve TT water solubility and to reduce TT metabolism in cancer cells, thus increasing their biological activity. These promising results, together with the safety of TT administration in healthy subjects, suggest that these compounds might represent a new chemopreventive or anticancer treatment (i.e., in combination with standard therapies) strategy. Clinical trials aimed at confirming this antitumor activity of TTs are needed.


Cell Death – Autophagy | 2018

PO-078 Role of the ER stress-autophagy axis and mitochondrial metabolism reprogramming in the apoptosis induced by δ-TOCOTRIENOL in prostate cancer

Fabrizio Fontana; M. Montagnani Marelli; Roberta M. Moretti; M Raimondi; Monica Marzagalli; R Longo; M Crestani; Patrizia Limonta

Introduction Castration resistant prostate cancer (CRPC) is an aggressive tumour with still limited therapeutic outcomes. Tocotrienols (TT), vitamin E derivatives, were reported to exert anticancer activity in different tumours. The aim of this study was to assess the effects of δ-TT on human CRPC cells growth and the molecular mechanisms associated with its activity. Material and methods In human normal prostate (RWPE-1) and CRPC (PC3 and DU145) cell lines the effect of δ-TT on cell viability was evaluated by MTT assay; in PC3 and DU145 cells Trypan blue exclusion and colony formation assays were also performed. The expression of apoptosis-, ER stress- and autophagy-related proteins was analysed by Western blot and immunofluorescence assays, and the cytotoxic effect of δ-TT was also assessed using specific inhibitors of these pathways. The effect on mitochondrial metabolism was evaluated analysing the expression of the OXPHOS complexes (Western blot), the mitochondrial activity and mass (flow cytometry), the oxygen consumption (Clark-type oxygen electrode) and the ATP production (colorimetric assay). Results and discussions We demonstrated that δ-TT exerts a cytotoxic effect on PC3 and DU145 but not on RWPE-1 cells. In particular, δ-TT induces caspase 3 and PARP cleavage and cytochrome c release from mitochondria, and its cytotoxic effect is partially blocked by co-treatment with the pan-caspase inhibitor z-VAD-FMK, confirming that δ-TT exerts a pro-apoptotic effect on CRPC cells. We also observed that δ-TT significantly increases the expression of ER stress (BiP, IRE1α, PERK, pEIF2α, ATF4 and CHOP) and autophagy mediators (LC3-II and p62). Using the ER stress inhibitors salubrinal and 4-phenylbutyrate (4-PBA) and the autophagic flux inhibitors 3-methyladenine and chloroquine, we confirmed that the effect of δ-TT is mediated by both these mechanisms. In addition, treatment with salubrinal or 4-PBA impairs δ-TT-induced LC3-II expression, demonstrating that this compound triggers the ER stress-autophagy axis. Finally, we observed that δ-TT severely alters mitochondrial metabolism: the expression of the OXPHOS protein complexes, the mitochondrial activity/mass ratio, the oxygen consumption and the ATP production were significantly reduced after δ-TT treatment. Conclusion These results demonstrate that δ-TT exerts a selective pro-apoptotic effect on human CRPC cells through the activation of the ER stress-autophagy axis and the rewiring of mitochondrial metabolism.

Collaboration


Dive into the Monica Marzagalli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge