Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence Lum is active.

Publication


Featured researches published by Lawrence Lum.


Nature Chemical Biology | 2009

Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer

Baozhi Chen; Michael E. Dodge; Wei Tang; Jianming Lu; Zhiqiang Ma; Chih Wei Fan; Shuguang Wei; Wayne Hao; Jessica A. Kilgore; Noelle S. Williams; Michael G. Roth; James F. Amatruda; Chuo Chen; Lawrence Lum

SUMMARY The pervasive influence of secreted Wnt signaling proteins in tissue homeostasis and tumorigenesis has galvanized efforts to identify small molecules that target Wnt-mediated cellular responses. By screening a diverse synthetic chemical library, we have discovered two novel classes of small molecules that disrupt Wnt pathway responses - whereas one class inhibits the activity of Porcupine (Porcn), a membrane-bound acyltransferase that is essential to the production of Wnt proteins, the other abrogates destruction of Axin proteins, suppressors of Wnt/β-catenin pathway activity. With these small molecules we establish a chemical genetic approach for studying Wnt pathway responses and stem cell function in adult tissue. We achieve transient, reversible suppression of Wnt/β-catenin pathway response in vivo, and establish a mechanism-based approach to target cancerous cell growth. The signal transduction mechanisms shown here to be chemically tractable additionally contribute to Wnt-independent signal transduction pathways and thus could be broadly exploited for chemical genetics and therapeutic goals.


Journal of Biological Chemistry | 1999

Evidence for a role of a tumor necrosis factor-α (TNF-α)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival

Lawrence Lum; Brian Wong; Régis Josien; J. David Becherer; Hediye Erdjument-Bromage; Johannes Schlöndorff; Paul Tempst; Yongwon Choi; Carl P. Blobel

Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE), a member of the TNF family, is a dendritic cell survival factor and is essential for osteoclastogenesis and osteoclast activation. In this report we demonstrate (i) that TRANCE, like TNF-α, is made as a membrane-anchored precursor, which is released from the plasma membrane by a metalloprotease; (ii) that soluble TRANCE has potent dendritic cell survival and osteoclastogenic activity; (iii) that the metalloprotease-disintegrin TNF-α convertase (TACE) can cleave immunoprecipitated TRANCE in vitro in a fashion that mimics the cleavage observed in tissue culture cells; and (iv) that in vitro cleavage of a TRANCE ectodomain/CD8 fusion protein and of a peptide corresponding to the TRANCE cleavage site by TACE occurs at the same site that is used when TRANCE is shed from cells into the supernatant. We propose that the TRANCE ectodomain is released from cells by TACE or a related metalloprotease-disintegrin, and that this release is an important component of the function of TRANCE in bone and immune homeostasis.


Nature | 2006

Prevalence of off-target effects in Drosophila RNA interference screens

Yong Ma; Adrian Creanga; Lawrence Lum; Philip A. Beachy

RNA interference (RNAi) in both plants and animals is mediated by small RNAs of approximately 21–23 nucleotides in length for regulation of target gene expression at multiple levels through partial sequence complementarities. Combined with widespread genome sequencing, experimental use of RNAi has the potential to interrogate systematically all genes in a given organism with respect to a particular function. However, owing to a tolerance for mismatches and gaps in base-pairing with targets, small RNAs could have up to hundreds of potential target sequences in a genome, and some small RNAs in mammalian systems have been shown to affect the levels of many messenger RNAs besides their intended targets. The use of long double-stranded RNAs (dsRNAs) in Drosophila, where Dicer-mediated processing produces small RNAs inside cells, has been thought to reduce the probability of such ‘off-target effects’ (OTEs). Here we show, however, that OTEs mediated by short homology stretches within long dsRNAs are prevalent in Drosophila. We have performed a genome-wide RNAi screen for novel components of Wingless (Wg) signal transduction in Drosophila S2R + cells, and found few, if any, legitimate candidates. Rather, many of the top candidates exert their effects on Wg response through OTEs on known pathway components or through promiscuous OTEs produced by tandem trinucleotide repeats present in many dsRNAs and genes. Genes containing such repeats are over-represented in candidate lists from published screens, suggesting that they represent a common class of false positives. Our results suggest simple measures to improve the reliability of genome-wide RNAi screens in Drosophila and other organisms.


Molecular Cell | 2003

Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2.

Lawrence Lum; Chi Zhang; Sekyung Oh; Randall K. Mann; Doris P. von Kessler; Jussi Taipale; Frances Weis-Garcia; Ruoyu Gong; Baolin Wang; Philip A. Beachy

The seven-transmembrane protein Smoothened (Smo) transduces extracellular activation of the Hedgehog (Hh) pathway by an unknown mechanism to increase transcriptional activity of the latent cytoplasmic transcription factor Ci (Cubitus interruptus). Here, we present evidence that Smo associates directly with a Ci-containing complex that is scaffolded and stabilized by the atypical kinesin, Costal-2 (Cos2). This complex constitutively suppresses pathway activity, but Hh signaling reverses its regulatory effect to promote Ci-mediated transcription. In response to Hh activation of Smo, Cos2 mediates accumulation and phosphorylation of Smo at the membrane as well as phosphorylation of the cytoplasmic components Fu and Su(fu). Positive response of Cos2 to Hh stimulation requires a portion of the Smo cytoplasmic tail and the Cos2 cargo domain, which interacts directly with Smo.


Cell | 2006

The Ihog Cell-Surface Proteins Bind Hedgehog and Mediate Pathway Activation

Shenqin Yao; Lawrence Lum; Philip A. Beachy

The ihog gene (interference hedgehog), identified by RNA interference in Drosophila cultured cells, encodes a type 1 membrane protein shown here to bind and to mediate response to the active Hedgehog (Hh) protein signal. ihog mutations produce defects characteristic of Hh signaling loss in embryos and imaginal discs, and epistasis analysis places ihog action at or upstream of the negatively acting receptor component, Patched (Ptc). The first of two extracellular fibronectin type III (FNIII) domains of the Ihog protein mediates a specific interaction with Hh protein in vitro, but the second FNIII domain is additionally required for in vivo signaling activity and for Ihog-enhanced binding of Hh protein to cells coexpressing Ptc. Other members of the Ihog family, including Drosophila Boi and mammalian CDO and BOC, also interact with Hh ligands via a specific FNIII domain, thus identifying an evolutionarily conserved family of membrane proteins that function in Hh signal response.


Development | 2011

Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development

Courtney M. Karner; Amrita Das; Zhendong Ma; Michelle Self; Chuo Chen; Lawrence Lum; Guillermo Oliver; Thomas J. Carroll

The mammalian kidney is composed of thousands of individual epithelial tubules known as nephrons. Deficits in nephron number are associated with myriad diseases ranging from complete organ failure to congenital hypertension. A balance between differentiation and maintenance of a mesenchymal progenitor cell population determines the final number of nephrons. How this balance is struck is poorly understood. Previous studies have suggested that Wnt9b/β-catenin signaling induced differentiation (mesenchymal-to-epithelial transition) in a subset of the progenitors but needed to be repressed in the remaining progenitors to keep them in the undifferentiated state. Here, we report that Wnt9b/β-catenin signaling is active in the progenitors and is required for their renewal/proliferation. Using a combination of approaches, we have revealed a mechanism through which cells receiving the same Wnt9b/β-catenin signal can respond in distinct ways (proliferate versus differentiate) depending on the cellular environment in which the signal is received. Interpretation of the signal is dependent, at least in part, on the activity of the transcription factor Six2. Six2-positive cells that receive the Wnt9b signal are maintained as progenitors whereas cells with reduced levels of Six2 are induced to differentiate by Wnt9b. Using this simple mechanism, the kidney is able to balance progenitor cell expansion and differentiation insuring proper nephron endowment. These findings provide novel insights into the molecular mechanisms that regulate progenitor cell differentiation during normal and pathological conditions.


Molecular and Cellular Biology | 2003

Potential Role for ADAM15 in Pathological Neovascularization in Mice

Keisuke Horiuchi; Gisela Weskamp; Lawrence Lum; Hans-Peter Hammes; Hui Cai; Thomas A. Brodie; Thomas Ludwig; Riccardo Chiusaroli; Roland Baron; Klaus T. Preissner; Katia Manova; Carl P. Blobel

ABSTRACT ADAM15 (named for a disintegrin and metalloprotease 15, metargidin) is a membrane-anchored glycoprotein that has been implicated in cell-cell or cell-matrix interactions and in the proteolysis of molecules on the cell surface or extracellular matrix. To characterize the potential roles of ADAM15 during development and in adult mice, we analyzed its expression pattern by mRNA in situ hybridization and generated mice carrying a targeted deletion of ADAM15 (adam15−/− mice). A high level of expression of ADAM15 was found in vascular cells, the endocardium, hypertrophic cells in developing bone, and specific areas of the hippocampus and cerebellum. However, despite the pronounced expression of ADAM15 in these tissues, no major developmental defects or pathological phenotypes were evident in adam15−/− mice. The elevated levels of ADAM15 in endothelial cells prompted an evaluation of its role in neovascularization. In a mouse model for retinopathy of prematurity, adam15−/− mice had a major reduction in neovascularization compared to wild-type controls. Furthermore, the size of tumors resulting from implanted B16F0 mouse melanoma cells was significantly smaller in adam15−/− mice than in wild-type controls. Since ADAM15 does not appear to be required for developmental angiogenesis or for adult homeostasis, it may represent a novel target for the design of inhibitors of pathological neovascularization.


Journal of Biological Chemistry | 1998

Intracellular Maturation of the Mouse Metalloprotease Disintegrin MDC15

Lawrence Lum; Martha S. Reid; Carl P. Blobel

Metalloprotease disintegrins are a family of membrane-anchored glycoproteins that play a role in fertilization, myoblast fusion, neuronal development, and cleavage of the membrane-anchored cytokine tumor necrosis factor-α. Here, we report the cloning and cDNA sequencing of the mouse metalloprotease disintegrin MDC15 and an analysis of its processing in the secretory pathway. A notable difference between mMDC15 and its putative human orthologue (hMDC15, metargidin) is the presence of the peptide sequence TDDC instead of the RGDC found in the disintegrin domain of hMDC15. In a Western blot analysis the majority of mMDC15 was found to lack the pro-domain in all mouse tissues examined. Pulse-chase experiments in transiently transfected COS-7 cells suggest that mMDC15 is processed by a pro-protein convertase in a late Golgi compartment, since (i) addition of brefeldin A or monensin blocks pro-domain removal, (ii) all detectable processed mMDC15 is endoglycosidase H -resistant, and (iii) a recombinant soluble form of the trans-Golgi network pro-protein convertase furin can mimic mMDC15 processing in vitro.Cell-surface trypsinization revealed that more than half of mature mMDC15 is intracellular. Immunolocalization provided evidence for a strong perinuclear accumulation in a region resembling the trans-Golgi network and/or endosomal compartments. This study provides the first characterization of the intracellular processing of a metalloprotease disintegrin, and highlights the potential role of pro-protein convertases in removal of the inhibitory pro-domain. These results further suggest possible intracellular functions for mMDC15, such as in protein maturation, in addition to a potential role in cell-surface proteolysis or cell adhesion.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Extensive phosphorylation of Smoothened in Hedgehog pathway activation

Chi Zhang; Elizabeth H. Williams; Yurong Guo; Lawrence Lum; Philip A. Beachy

The transmembrane protein Smoothened (Smo) is activated in response to the extracellular protein signal, Hedgehog (Hh), and transmits this state of pathway activity into the cell. Previous studies in Drosophila have correlated pathway activation with Smo accumulation and increased phosphorylation. Using immunopurification and mass spectrometry, we identify here 26 serine/threonine residues within the Smo C-terminal cytoplasmic tail that are phosphorylated in Hh-stimulated cells. By systematically substituting alanine or glutamic acid to block or simulate phosphorylation, we provide evidence for a functional role of collective phosphorylation of a subset of phosphoresidues in pathway activation. This role is indicated by the ability of altered Smo proteins to produce changes in transcription of Hh-responsive genes in vivo and in cultured cells. These altered Smo proteins also affect biochemical indicators of pathway activity, such as Smo accumulation and phosphorylation of other pathway components. The prevalence and arrangement of phosphoresidues within the Smo cytoplasmic tail at recognition sites for cAMP-dependent protein kinase and casein kinase 1 suggest a role for these kinases in Smo phosphorylation, and such a role is supported by the effects of manipulating kinase activities in cultured cells. Our studies confirm and extend previous studies showing a positive effect for cAMP-dependent protein kinase and uncover a positive role for casein kinase 1α in Hh pathway activation.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A genome-wide RNAi screen for Wnt/β-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer

Wei Tang; Michael E. Dodge; Deepika Gundapaneni; Carolyn H. Michnoff; Michael G. Roth; Lawrence Lum

The Wnt family of secreted proteins coordinate cell fate decision-making in a broad range of developmental and homeostatic contexts. Corruption of Wnt signal transduction pathways frequently results in degenerative diseases and cancer. We have used an iterative genome-wide screening strategy that employs multiple nonredundant RNAi reagents to identify mammalian genes that participate in Wnt/β-catenin pathway response. Among the genes that were assigned high confidence scores are two members of the TCF/LEF family of DNA-binding proteins that control the transcriptional output of the pathway. Surprisingly, we found that the presumed cancer-promoting gene TCF7L2 functions instead as a transcriptional repressor that restricts colorectal cancer (CRC) cell growth. Mutations in TCF7L2 identified from cancer genome sequencing efforts abolish its ability to function as a transcriptional regulator and result in increased CRC cell growth. We describe a growth-promoting transcriptional program that is likely activated in CRC tumors with compromised TCF7L2 function. Taken together, the results from our screen and studies focused on members of the TCF/LEF gene family refine our understanding of how aberrant Wnt pathway activation sustains CRC growth.

Collaboration


Dive into the Lawrence Lum's collaboration.

Top Co-Authors

Avatar

Chuo Chen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rubina Tuladhar

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Carl P. Blobel

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Chih Wei Fan

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ozlem Kulak

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James F. Amatruda

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael E. Dodge

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Noelle S. Williams

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jerry W. Shay

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge