Leanne Cooper
QIMR Berghofer Medical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leanne Cooper.
Nature Genetics | 1999
Josephine Bowles; Leanne Cooper; Jennifer L. Berkman; Peter Koopman
SRY, the mammalian Y-chromosomal sex-determining gene, encodes a protein characterized by a DNA-binding and -bending domain referred to as the HMG box. Despite the pivotal role of this gene, only the HMG box region has been conserved through evolution, suggesting that SRY function depends solely on the HMG box and therefore acts as an architectural transcription factor. In mice (genus Mus) Sry also includes a large CAG trinucleotide repeat region encoding a carboxy-terminal glutamine-rich domain that acts as a transcriptional trans-activator in vitro. The absence of this or any other potential trans-activating domain in other mammals, however, has raised doubts as to its biological relevance. To test directly whether the glutamine-rich region is required for Sry function in vivo, we created truncation mutations of the Mus musculus musculus Sry gene and tested their ability to induce testis formation in XX embryos using a transgenic mouse assay. Sry constructs that encode proteins lacking the glutamine-rich region were unable to effect male sex determination, in contrast to their wild-type counterparts. We conclude that the glutamine-rich repeat domain of the mouse Sry protein has an essential role in sex determination in vivo, and that Sry may act via a fundamentally different biochemical mechanism in mice compared with other mammals.
Developmental Dynamics | 1997
Murray Hargrave; Edwina Wright; Jutta Kun; Jacqueline Emery; Leanne Cooper; Peter Koopman
Sry, the mammalian Y‐linked testis determining gene, is a member of a family of genes known as Sox genes, which encode transcription factors related by a DNA‐binding motif termed the HMG box. Sox genes are known to have diverse roles in vertebrate differentiation and development. We report here the cloning and characterisation of one of these genes, Sox11, in mice. In addition to an N‐terminal HMG box domain, the deduced SOX11 protein contains a number of highly conserved C‐terminal motifs, which may function in transcriptional regulation. Expression of Sox11 in mouse embryos was prominent in the periventricular cells of the central nervous system, suggesting a role in neuronal maturation. Expression was also observed in a wide range of tissues involved in epithelial‐mesenchymal interactions, suggesting an additional role in tissue modelling during development. Dev. Dyn. 1997;210:79–86.
Cancer Cell | 2013
Bryan W. Day; Brett W. Stringer; Fares Al-Ejeh; Michael J. Ting; John Wilson; Kathleen S. Ensbey; Paul R. Jamieson; Zara C. Bruce; Yi Chieh Lim; Carolin Offenhäuser; Sara Charmsaz; Leanne Cooper; Jennifer K. Ellacott; Angus Harding; Lucie Leveque; Po Inglis; Suzanne Allan; David G. Walker; Martin Lackmann; Geoffrey W. Osborne; Kum Kum Khanna; Brent A. Reynolds; Jason D. Lickliter; Andrew W. Boyd
Significant endeavor has been applied to identify functional therapeutic targets in glioblastoma (GBM) to halt the growth of this aggressive cancer. We show that the receptor tyrosine kinase EphA3 is frequently overexpressed in GBM and, in particular, in the most aggressive mesenchymal subtype. Importantly, EphA3 is highly expressed on the tumor-initiating cell population in glioma and appears critically involved in maintaining tumor cells in a less differentiated state by modulating mitogen-activated protein kinase signaling. EphA3 knockdown or depletion of EphA3-positive tumor cells reduced tumorigenic potential to a degree comparable to treatment with a therapeutic radiolabelled EphA3-specific monoclonal antibody. These results identify EphA3 as a functional, targetable receptor in GBM.
PLOS Pathogens | 2010
Mai H. Tran; Tori C. Freitas; Leanne Cooper; Soraya Gaze; Michelle L. Gatton; Malcolm K. Jones; Erica Lovas; Edward J. Pearce; Alex Loukas
Schistosomes express a family of integral membrane proteins, called tetraspanins (TSPs), in the outer surface membranes of the tegument. Two of these tetraspanins, Sm-TSP-1 and Sm-TSP-2, confer protection as vaccines in mice, and individuals who are naturally resistant to S. mansoni infection mount a strong IgG response to Sm-TSP-2. To determine their functions in the tegument of S. mansoni we used RNA interference to silence expression of Sm-tsp-1 and Sm-tsp-2 mRNAs. Soaking of parasites in Sm-tsp dsRNAs resulted in 61% (p = 0.009) and 74% (p = 0.009) reductions in Sm-tsp-1 and Sm-tsp-2 transcription levels, respectively, in adult worms, and 67%–75% (p = 0.011) and 69%–89% (p = 0.004) reductions in Sm-tsp-1 and Sm-tsp-2 transcription levels, respectively, in schistosomula compared to worms treated with irrelevant control (luciferase) dsRNA. Ultrastructural morphology of adult worms treated in vitro with Sm-tsp-2 dsRNA displayed a distinctly vacuolated and thinner tegument compared with controls. Schistosomula exposed in vitro to Sm-tsp-2 dsRNA had a significantly thinner and more vacuolated tegument, and morphology consistent with a failure of tegumentary invaginations to close. Injection of mice with schistosomula that had been electroporated with Sm-tsp-1 and Sm-tsp-2 dsRNAs resulted in 61% (p = 0.005) and 83% (p = 0.002) reductions in the numbers of parasites recovered from the mesenteries four weeks later when compared to dsRNA-treated controls. These results imply that tetraspanins play important structural roles impacting tegument development, maturation or stability.
Molecular and Biochemical Parasitology | 1992
Juan A. Cooper; Leanne Cooper; Allan Saul
The locations of the epitopes of a panel of mouse monoclonal antibodies directed against the Plasmodium falciparum merozoite surface antigen MSA 1 were mapped by using naturally occurring processed fragments, by chemical cleavage of the protein and by comparison of the isolate-specificity of binding with known sequence variation. By these criteria, the most antigenic region occurs in the cysteine-rich, invariant 19-kDa carboxyl terminal domain with 12/19 monoclonal antibodies (mAbs) binding to this region. One of these mAbs recognized an epitope near the C-terminal putative glycosylphosphatidylinositol anchor site. This was the only mAb which significantly inhibited parasite growth in vitro. The other mAbs recognized conformational epitopes involving the cysteine residues located throughout this fragment. This study has identified further naturally occurring processing sites and a consensus processing site sequence is now emerging.
Cancer Research | 2004
Jaikumar Duraiswamy; Mandvi Bharadwaj; Judy Tellam; Geoff Connolly; Leanne Cooper; Denis J. Moss; Scott Thomson; Patricia Yotnda; Rajiv Khanna
The EBV-encoded latent membrane proteins (LMP1 and LMP2), which are expressed in various EBV-associated malignancies have been proposed as a potential target for CTL-based therapy. However, the precursor frequency for LMP-specific CTL is generally low, and immunotherapy based on these antigens is often compromised by the poor immunogenicity and potential threat from their oncogenic potential. Here we have developed a replication- incompetent adenoviral vaccine that encodes multiple HLA class I-restricted CTL epitopes from LMP1 and LMP2 as a polyepitope. Immunization with this polyepitope vaccine consistently generated strong LMP-specific CTL responses in HLA A2/Kb mice, which can be readily detected by both ex vivo and in vivo T-cell assays. Furthermore, a human CTL response to LMP antigens can be rapidly expanded after stimulation with this recombinant polyepitope vector. These expanded T cells displayed strong lysis of autologous target cells sensitized with LMP1 and/or LMP2 CTL epitopes. More importantly, this adenoviral vaccine was also successfully used to reverse the outgrowth of LMP1-expressing tumors in HLA A2/Kb mice. These studies demonstrate that a replication-incompetent adenovirus polyepitope vaccine is an excellent tool for the induction of a protective CTL response directed toward multiple LMP CTL epitopes restricted through common HLA class I alleles prevalent in different ethnic groups where EBV-associated malignancies are endemic.
Cell | 2012
Piers J. Walser; Nicholas Ariotti; Mark T. Howes; Charles Ferguson; Richard I. Webb; Dominik Schwudke; Natalya Leneva; Kwang Jin Cho; Leanne Cooper; James Rae; Matthias Floetenmeyer; Viola Oorschot; Ulf Skoglund; Kai Simons; John F. Hancock; Robert G. Parton
Caveolin plays an essential role in the formation of characteristic surface pits, caveolae, which cover the surface of many animal cells. The fundamental principles of caveola formation are only slowly emerging. Here we show that caveolin expression in a prokaryotic host lacking any intracellular membrane system drives the formation of cytoplasmic vesicles containing polymeric caveolin. Vesicle formation is induced by expression of wild-type caveolins, but not caveolin mutants defective in caveola formation in mammalian systems. In addition, cryoelectron tomography shows that the induced membrane domains are equivalent in size and caveolin density to native caveolae and reveals a possible polyhedral arrangement of caveolin oligomers. The caveolin-induced vesicles or heterologous caveolae (h-caveolae) form by budding in from the cytoplasmic membrane, generating a membrane domain with distinct lipid composition. Periplasmic solutes are encapsulated in the budding h-caveola, and purified h-caveolae can be tailored to be targeted to specific cells of interest.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Judy Tellam; Corey Smith; Michael Rist; Natasha Webb; Leanne Cooper; Tony Vuocolo; Geoff Connolly; David C. Tscharke; Michael P. Devoy; Rajiv Khanna
Many viruses avoid immune surveillance during latent infection through reduction in the synthesis of virally encoded proteins. Although antigen presentation critically depends on the level of viral protein synthesis, the precise mechanism used to regulate the generation of antigenic peptide precursors remains elusive. Here, we demonstrate that a purine overloaded virally encoded mRNA lacking secondary structure significantly impacts the efficiency of protein translation and prevents endogenous antigen presentation. Reducing this purine bias through the generation of constructs expressing codon-modified sequences, while maintaining the encoded protein sequence, increased the stem–loop structure of the corresponding mRNA and dramatically enhanced self-synthesis of the viral protein. As a consequence, a higher number of HLA–peptide complexes were detected on the surface of cells expressing this viral protein. Furthermore, these cells were more efficiently recognized by virus-specific T cells compared with those expressing the same antigen expressed by a purine-biased mRNA. These findings delineate a mechanism by which viruses regulate self-synthesis of proteins and offer an effective strategy to evade CD8+ T cell-mediated immune regulation.
Journal of Virology | 2003
Jaikumar Duraiswamy; Jacqueline M. Burrows; Mandvi Bharadwaj; Scott R. Burrows; Leanne Cooper; Nattiya Pimtanothai; Rajiv Khanna
ABSTRACT Epstein-Barr virus (EBV)-encoded oncogene latent membrane protein (LMP) 1, which is consistently expressed in multiple EBV-associated malignancies, has been proposed as a potential target antigen for any future vaccine designed to control these malignancies. However, the high degree of genetic variation in the LMP1 sequence has been considered a major impediment for its use as a potential immunotherapeutic target for the treatment of EBV-associated malignancies. In the present study, we have employed a highly efficient strategy, based on ex vivo functional assays, to conduct an extensive sequence-wide analysis of LMP1-specific T-cell responses in a large panel of healthy virus carriers of diverse ethnic origin and nasopharyngeal carcinoma patients. By comparing the frequencies of T cells specific for overlapping peptides spanning LMP1, we mapped a number of novel HLA class I- and class II-restricted LMP1 T-cell epitopes, including an epitope with dual HLA class I restriction. More importantly, extensive sequence analysis of LMP1 revealed that the majority of the T-cell epitopes were highly conserved in EBV isolates from Caucasian, Papua New Guinean, African, and Southeast Asian populations, while unique geographically constrained genetic variation was observed within one HLA A2 supertype-restricted epitope. These findings indicate that conserved LMP1 epitopes should be considered in designing epitope-based immunotherapeutic strategies against EBV-associated malignancies in different ethnic populations.
Experimental Parasitology | 1991
Leanne Cooper; R. D. Cooper; Thomas R. Burkot
Isotopic and enzyme-labeled species-specific DNA probes were made for the three known members of the Anopheles punctulatus complex of mosquitoes in Australia (Anopheles farauti Nos. 1, 2, and 3). Species-specific probes were selected by screening total genomic libraries made from the DNA of individual species with 32P-labeled DNA of homologous and heterologous mosquito species. The 32P-labeled probes for A. farauti Nos. 1 and 2 can detect less than 0.2 ng of DNA while the 32P-labeled probe for A. farauti No. 3 has a sensitivity of 1.25 ng of DNA. Probes were then enzyme labeled for chromogenic and chemiluminescence detection and compared to isotopic detection using 32P-labeled probes. Sequences of the probe repeat regions are presented. Species identifications can be made from dot blots or squashes of freshly killed mosquitoes or mosquitoes stored frozen, dried, and held at room temperature or fixed in isopropanol or ethanol with isotopic, chromogenic, or chemiluminescence detection systems. The use of nonisotopic detection systems will enable laboratories with minimal facilities to identify important regional vectors.