Judy Tellam
QIMR Berghofer Medical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Judy Tellam.
Journal of Virology | 2003
Rebecca Elkington; Susan Walker; Tania Crough; Moira Menzies; Judy Tellam; Mandvi Bharadwaj; Rajiv Khanna
ABSTRACT Human cytomegalovirus (HCMV) can establish both nonproductive (latent) and productive (lytic) infections. Many of the proteins expressed during these phases of infection could be expected to be targets of the immune response; however, much of our understanding of the CD8+-T-cell response to HCMV is mainly based on the pp65 antigen. Very little is known about T-cell control over other antigens expressed during the different stages of virus infection; this imbalance in our understanding undermines the importance of these antigens in several aspects of HCMV disease pathogenesis. In the present study, an efficient and rapid strategy based on predictive bioinformatics and ex vivo functional T-cell assays was adopted to profile CD8+-T-cell responses to a large panel of HCMV antigens expressed during different phases of replication. These studies revealed that CD8+-T-cell responses to HCMV often contained multiple antigen-specific reactivities, which were not just constrained to the previously identified pp65 or IE-1 antigens. Unexpectedly, a number of viral proteins including structural, early/late antigens and HCMV-encoded immunomodulators (pp28, pp50, gH, gB, US2, US3, US6, and UL18) were also identified as potential targets for HCMV-specific CD8+-T-cell immunity. Based on this extensive analysis, numerous novel HCMV peptide epitopes and their HLA-restricting determinants recognized by these T cells have been defined. These observations contrast with previous findings that viral interference with the antigen-processing pathway during lytic infection would render immediate-early and early/late proteins less immunogenic. This work strongly suggests that successful HCMV-specific immune control in healthy virus carriers is dependent on a strong T-cell response towards a broad repertoire of antigens.
Journal of Biological Chemistry | 1997
Judy Tellam; S L Macaulay; Shane McIntosh; Hewish Dr; Colin W. Ward; David E. James
We have previously identified three mammalian Sec1/Munc-18 homologues in adipocytes (Tellam, J. T., McIntosh, S., and James, D. E. (1995) J. Biol. Chem. 270, 5857-5863). These proteins are thought to modulate the interaction between vesicle membrane and target membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and thus regulate intracellular vesicular transport. This study aimed to further characterize these Munc-18 isoforms and to define their potential role in the trafficking of GLUT-4 in adipocytes, a process reported to involve the vesicle membrane SNARE, VAMP-2. Using an in vitro binding assay with recombinant fusion proteins, we show that Munc-18a and Munc-18b bind to syntaxin-1A, −2, and −3, while Munc-18c binds only to syntaxin-2 and −4. The specific interaction between Munc-18c and syntaxin-4 is of interest because aside from syntaxin-1A, which is not expressed in adipocytes, syntaxin-4 is the only syntaxin that binds to VAMP-2. Using a three-way binding assay, it was shown that Munc-18c inhibits the binding of syntaxin-4 to VAMP-2. The subcellular distribution of syntaxin-4 and Munc-18c was almost identical, both being enriched in the plasma membrane, and both exhibiting an insulin-dependent movement out of an intracellular membrane fraction similar to that observed for GLUT-4. Munc-18b had a similar distribution to Munc-18c and so may also be involved in vesicle transport to the cell surface, whereas Munc-18a was undetectable by immunoblotting in adipocytes. Microinjection of a syntaxin-4 antibody into 3T3-L1 adipocytes blocked the insulin-dependent recruitment of GLUT-4 to the cell surface. These data suggest that syntaxin-4/Munc-18c/VAMP-2 may play a role in the docking/fusion of intracellular GLUT-4-containing vesicles with the cell surface in adipocytes.
Journal of Experimental Medicine | 2004
Kui Shin Voo; Tihui Fu; Helen Y. Wang; Judy Tellam; Helen E. Heslop; Malcolm K. Brenner; Cliona M. Rooney; Rong Fu Wang
The Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) is expressed in all EBV-associated tumors, making it an important target for immunotherapy. However, evidence for major histocompatibility complex (MHC) class I–restricted EBNA1 peptides endogenously presented by EBV-transformed B and tumor cells remains elusive. Here we describe for the first time the identification of an endogenously processed human histocompatibility leukocyte antigen (HLA)-B8–restricted EBNA1 peptide that is recognized by CD8+ T cells. T cell recognition could be inhibited by the treatment of target cells with proteasome inhibitors that block the MHC class I antigen processing pathway, but not by an inhibitor (chloroquine) of MHC class II antigen processing. We also demonstrate that new protein synthesis is required for the generation of the HLA-B8 epitope for T cell recognition, suggesting that defective ribosomal products (DRiPs) are the major source of T cell epitopes. Experiments with protease inhibitors indicate that some serine proteases may participate in the degradation of EBNA1 DRiPs before they are further processed by proteasomes. These findings not only provide the first evidence of the presentation of an MHC class I–restricted EBNA1 epitope to CD8+ T cells, but also offer new insight into the molecular mechanisms involved in the processing and presentation of EBNA1.
Journal of Experimental Medicine | 2004
Judy Tellam; Geoff Connolly; Katherine J. Green; John J. Miles; Denis J. Moss; Scott R. Burrows; Rajiv Khanna
Epstein-Barr virus (EBV)–encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type–dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I–restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8+ T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8+ T cell epitopes from EBNA1.
British Journal of Haematology | 2004
Maher K. Gandhi; Judy Tellam; Rajiv Khanna
Survivors of Hodgkins lymphoma (HL) frequently have many years to experience the long‐term toxicities of combined modality therapies. Also, a significant proportion of HL patients will relapse or have refractory disease, and less than half of these patients will respond to current salvage strategies. 30–50% of HL cases are Epstein–Barr virus associated (EBV‐positive HL). The virus is localized to the malignant cells and is clonal. EBV‐positive HL is more frequent in childhood, in older adults (>45 years) and in mixed cellularity cases. The survival of EBV‐positive HL in the elderly and the immunosuppressed is particularly poor. Despite improvements in our understanding of EBV‐positive HL, the true contribution of EBV to the pathogenesis of HL remains unknown. Increased knowledge of the virus’ role in the basic biology of HL may generate novel therapeutic strategies for EBV‐positive HL and the presence of EBV‐latent antigens in the malignant HL cells may represent a target for cellular immunotherapy.
Seminars in Cancer Biology | 2008
Maaike E. Ressing; Daniëlle Horst; Bryan D. Griffin; Judy Tellam; Jianmin Zuo; Rajiv Khanna; Martin Rowe; Emmanuel J. H. J. Wiertz
Upon primary infection, EBV establishes a latent infection in B cells, characterized by maintenance of the viral genome in the absence of viral replication. The Epstein-Barr Nuclear Antigen 1 (EBNA1) plays a crucial role in maintenance of the viral DNA episome and is consistently expressed in all EBV-associated malignancies. Compared to other EBV latent gene products, EBNA1 is poorly recognized by CD8(+) T lymphocytes. Recent studies are discussed that shed new light on the mechanisms that underlie this unusual lack of CD8(+) T cell activation. Whereas the latent phase is characterized by the expression of a limited subset of viral gene products, the full repertoire of over 80 EBV lytic gene products is expressed during the replicative phase. Despite this abundance of potential T cell antigens, which indeed give rise to a strong response of CD4(+) and CD8(+) T lymphocytes, the virus can replicate successfully. Evidence is accumulating that this paradoxical situation is the result of actions of multiple viral gene products, inhibiting discrete stages of the MHC class I and class II antigen presentation pathways. Immediately after initiation of the lytic cycle, BNLF2a prevents peptide-loading of MHC class I molecules through inhibition of the Transporter associated with Antigen Processing, TAP. This will reduce presentation of viral antigens by the large ER-resident pool of MHC class I molecules. Synthesis of new MHC class I molecules is blocked by BGLF5. Viral-IL10 causes a reduction in mRNA levels of TAP1 and bli/LMP2, a subunit of the immunoproteasome. MHC class I molecules present at the cell surface are downregulated by BILF1. Also the antigen presenting capacity of MHC class II molecules is severely compromised by multiple EBV lytic gene products, including gp42/gH/gL, BGLF5, and vIL-10. In this review, we discuss how concerted actions of these EBV lytic proteins result in highly effective interference with CD8(+) and CD4(+) T cell surveillance, thereby providing the virus with a window for undisturbed generation of viral progeny.
Nature Chemical Biology | 2014
Pierre Murat; Jie Zhong; Lea Lekieffre; Nathan P Cowieson; Jennifer L. Clancy; Thomas Preiss; Shankar Balasubramanian; Rajiv Khanna; Judy Tellam
Viruses that establish latent infections have evolved unique mechanisms to avoid host immune recognition. Maintenance proteins of these viruses regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The mechanisms governing this finely tuned regulation of viral latency are unknown. Here we show that mRNAs encoding gammaherpesviral maintenance proteins contain within their open reading frames clusters of unusual structural elements, G-quadruplexes, which are responsible for the cis-acting regulation of viral mRNA translation. By studying the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1) mRNA, we demonstrate that destabilization of G-quadruplexes using antisense oligonucleotides increases EBNA1 mRNA translation. In contrast, pretreatment with a G-quadruplex-stabilizing small molecule, pyridostatin, decreases EBNA1 synthesis, highlighting the importance of G-quadruplexes within virally encoded transcripts as unique regulatory signals for translational control and immune evasion. Furthermore, these findings suggest alternative therapeutic strategies focused on targeting RNA structure within viral ORFs.
Journal of Experimental Medicine | 2005
Fleur E. Tynan; Diah Elhassen; Anthony W. Purcell; Jacqueline M. Burrows; Natalie A. Borg; John J. Miles; Nicholas A. Williamson; Kate J. Green; Judy Tellam; Lars Kjer-Nielsen; James McCluskey; Jamie Rossjohn; Scott R. Burrows
Thousands of potentially antigenic peptides are encoded by an infecting pathogen; however, only a small proportion induce measurable CD8+ T cell responses. To investigate the factors that control peptide immunogenicity, we have examined the cytotoxic T lymphocyte (CTL) response to a previously undefined epitope (77APQPAPENAY86) from the BZLF1 protein of Epstein-Barr virus (EBV). This peptide binds well to two human histocompatibility leukocyte antigen (HLA) allotypes, HLA-B*3501 and HLA-B*3508, which differ by a single amino acid at position 156 (156Leucine vs. 156Arginine, respectively). Surprisingly, only individuals expressing HLA-B*3508 show evidence of a CTL response to the 77APQPAPENAY86 epitope even though EBV-infected cells expressing HLA-B*3501 process and present similar amounts of peptide for CTL recognition, suggesting that factors other than peptide presentation levels are influencing immunogenicity. Functional and structural analysis revealed marked conformational differences in the peptide, when bound to each HLA-B35 allotype, that are dictated by the polymorphic HLA residue 156 and that directly affected T cell receptor recognition. These data indicate that the immunogenicity of an antigenic peptide is influenced not only by how well the peptide binds to major histocompatibility complex (MHC) molecules but also by its bound conformation. It also illustrates a novel mechanism through which MHC polymorphism can further diversify the immune response to infecting pathogens.
Cancer Research | 2004
Jaikumar Duraiswamy; Mandvi Bharadwaj; Judy Tellam; Geoff Connolly; Leanne Cooper; Denis J. Moss; Scott Thomson; Patricia Yotnda; Rajiv Khanna
The EBV-encoded latent membrane proteins (LMP1 and LMP2), which are expressed in various EBV-associated malignancies have been proposed as a potential target for CTL-based therapy. However, the precursor frequency for LMP-specific CTL is generally low, and immunotherapy based on these antigens is often compromised by the poor immunogenicity and potential threat from their oncogenic potential. Here we have developed a replication- incompetent adenoviral vaccine that encodes multiple HLA class I-restricted CTL epitopes from LMP1 and LMP2 as a polyepitope. Immunization with this polyepitope vaccine consistently generated strong LMP-specific CTL responses in HLA A2/Kb mice, which can be readily detected by both ex vivo and in vivo T-cell assays. Furthermore, a human CTL response to LMP antigens can be rapidly expanded after stimulation with this recombinant polyepitope vector. These expanded T cells displayed strong lysis of autologous target cells sensitized with LMP1 and/or LMP2 CTL epitopes. More importantly, this adenoviral vaccine was also successfully used to reverse the outgrowth of LMP1-expressing tumors in HLA A2/Kb mice. These studies demonstrate that a replication-incompetent adenovirus polyepitope vaccine is an excellent tool for the induction of a protective CTL response directed toward multiple LMP CTL epitopes restricted through common HLA class I alleles prevalent in different ethnic groups where EBV-associated malignancies are endemic.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Judy Tellam; Corey Smith; Michael Rist; Natasha Webb; Leanne Cooper; Tony Vuocolo; Geoff Connolly; David C. Tscharke; Michael P. Devoy; Rajiv Khanna
Many viruses avoid immune surveillance during latent infection through reduction in the synthesis of virally encoded proteins. Although antigen presentation critically depends on the level of viral protein synthesis, the precise mechanism used to regulate the generation of antigenic peptide precursors remains elusive. Here, we demonstrate that a purine overloaded virally encoded mRNA lacking secondary structure significantly impacts the efficiency of protein translation and prevents endogenous antigen presentation. Reducing this purine bias through the generation of constructs expressing codon-modified sequences, while maintaining the encoded protein sequence, increased the stem–loop structure of the corresponding mRNA and dramatically enhanced self-synthesis of the viral protein. As a consequence, a higher number of HLA–peptide complexes were detected on the surface of cells expressing this viral protein. Furthermore, these cells were more efficiently recognized by virus-specific T cells compared with those expressing the same antigen expressed by a purine-biased mRNA. These findings delineate a mechanism by which viruses regulate self-synthesis of proteins and offer an effective strategy to evade CD8+ T cell-mediated immune regulation.