Lekh N. Dahal
Southampton General Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lekh N. Dahal.
Blood | 2015
Thomas R.W. Tipton; Ali Roghanian; Robert J. Oldham; Matthew J. Carter; Kerry L. Cox; C. Ian Mockridge; Ruth R. French; Lekh N. Dahal; Patrick J. Duriez; Phillip G. Hargreaves; Mark S. Cragg; Stephen A. Beers
Following the success of rituximab, 2 other anti-CD20 monoclonal antibodies (mAbs), ofatumumab and obinutuzumab, have entered clinical use. Ofatumumab has enhanced capacity for complement-dependent cytotoxicity, whereas obinutuzumab, a type II mAb, lacks the ability to redistribute into lipid rafts and is glycoengineered for augmented antibody-dependent cellular cytotoxicity (ADCC). We previously showed that type I mAbs such as rituximab have a propensity to undergo enhanced antigenic modulation compared with type II. Here we assessed the key effector mechanisms affected, comparing type I and II antibodies of various isotypes in ADCC and antibody-dependent cellular-phagocytosis (ADCP) assays. Rituximab and ofatumumab depleted both normal and leukemic human CD20-expressing B cells in the mouse less effectively than glycoengineered and wild-type forms of obinutuzumab, particularly when human immunoglobulin G1 (hIgG1) mAbs were compared. In contrast to mouse IgG2a, hIgG1 mAbs were ineffective in ADCC assays with murine natural killer cells as effectors, whereas ADCP was equivalent for mouse IgG2a and hIgG1. However, rituximabs ability to elicit both ADCC and ADCP was reduced by antigenic modulation, whereas type II antibodies remained unaffected. These data demonstrate that ADCP and ADCC are impaired by antigenic modulation and that ADCP is the main effector function employed in vivo.
Immunological Reviews | 2015
Lekh N. Dahal; Ali Roghanian; Stephen A. Beers; Mark S. Cragg
Monoclonal antibody (mAb) immunotherapy is currently experiencing an unprecedented amount of success, delivering blockbuster sales for the pharmaceutical industry. Having experienced several false dawns and overcoming technical issues which limited progress, we are now entering a golden period where mAbs are becoming a mainstay of treatment regimes for diseases ranging from cancer to autoimmunity. In this review, we discuss how these mAbs are most likely working and focus in particular on the key receptors that they interact with to precipitate their therapeutic effects. Although their targets may vary, their engagement with Fcγ receptors (FcγRs) on numerous immune effector cells is almost universal, and here we review their roles in delivering successful immunotherapy.
Journal of Immunology | 2015
Alison L. Tutt; Sonya James; Stéphanie A. Laversin; Thomas R W Tipton; Margaret Ashton-Key; Ruth R. French; Khiyam Hussain; Andrew T. Vaughan; Lang Dou; Alexander Earley; Lekh N. Dahal; Chih-Chen Lu; Melanie S. Dunscombe; H. T. Claude Chan; Christine A. Penfold; Jinny H. Kim; Elizabeth A. Potter; C. Ian Mockridge; Ali Roghanian; Robert J. Oldham; Kerry L. Cox; Sean H. Lim; Ingrid Teige; Björn Frendéus; Martin J. Glennie; Stephen A. Beers; Mark S. Cragg
FcγRs are key regulators of the immune response, capable of binding to the Fc portion of IgG Abs and manipulating the behavior of numerous cell types. Through a variety of receptors, isoforms, and cellular expression patterns, they are able to fine-tune and direct appropriate responses. Furthermore, they are key determinants of mAb immunotherapy, with mAb isotype and FcγR interaction governing therapeutic efficacy. Critical to understanding the biology of this complex family of receptors are reagents that are robust and highly specific for each receptor. In this study, we describe the development and characterization of mAb panels specific for both mouse and human FcγR for use in flow cytometry, immunofluorescence, and immunocytochemistry. We highlight key differences in expression between the two species and also patterns of expression that will likely impact on immunotherapeutic efficacy and translation of therapeutic agents from mouse to clinic.
Drug Discovery Today | 2016
Venkat Reddy; Lekh N. Dahal; Mark S. Cragg; Mj Leandro
In Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE), B-cell depletion therapy using rituximab results in variable clinical responses between individuals, which likely relates to variable B-cell depletion in the presence of immune defects. Outcomes in clinical trials with other type I anti-CD20 mAbs, ocrelizumab and ofatumumab, are comparable to rituximab. A mechanistically different type II mAb, obinutuzumab (OBZ), with greater capacity for B-cell depletion, has recently entered clinical trials in SLE. Here we consider whether type II anti-CD20 mAbs will provide mechanistic advantages to overcome the disease-related immune defects in autoimmune diseases such as SLE.
Cancer Research | 2017
Lekh N. Dahal; Lang Dou; Khiyam Hussain; Rena Liu; Alexander Earley; Kerry L. Cox; Salome Murinello; Ian Tracy; Francesco Forconi; Andrew Steele; Patrick J. Duriez; Diego Gomez-Nicola; Jessica L. Teeling; Martin J. Glennie; Mark S. Cragg; Stephen A. Beers
Tumors routinely attract and co-opt macrophages to promote their growth, angiogenesis, and metastasis. Macrophages are also the key effector cell for mAb therapies. Here we report that the tumor microenvironment creates an immunosuppressive signature on tumor-associated macrophages (TAM), which favors expression of inhibitory rather than activating Fcγ receptors (FcγR), thereby limiting the efficacy of mAb immunotherapy. We assessed a panel of TLR and STING agonists (a) for their ability to reprogram macrophages to a state optimal for mAb immunotherapy. Both STINGa and TLRa induced cytokine release, modulated FcγR expression, and augmented mAb-mediated tumor cell phagocytosis in vitro However, only STINGa reversed the suppressive FcγR profile in vivo, providing strong adjuvant effects to anti-CD20 mAb in murine models of lymphoma. Potent adjuvants like STINGa, which can improve FcγR activatory:inhibitory (A:I) ratios on TAM, are appealing candidates to reprogram TAM and curb tumor-mediated immunosuppression, thereby empowering mAb efficacy. Cancer Res; 77(13); 3619-31. ©2017 AACR.
Cancer Cell | 2017
Anna H. Turaj; Khiyam Hussain; Kerry L. Cox; Matthew J. Rose-Zerilli; James Testa; Lekh N. Dahal; H. T. Claude Chan; Sonya James; Vikki L. Field; Matthew J. Carter; Hyung J. Kim; Jonathan West; Lawrence J. Thomas; Li-Zhen He; Tibor Keler; Peter Johnson; Aymen Al-Shamkhani; Stephen M. Thirdborough; Stephen A. Beers; Mark S. Cragg; Martin J. Glennie; Sean H. Lim
Summary Monoclonal antibodies (mAbs) can destroy tumors by recruiting effectors such as myeloid cells, or targeting immunomodulatory receptors to promote cytotoxic T cell responses. Here, we examined the therapeutic potential of combining a direct tumor-targeting mAb, anti-CD20, with an extended panel of immunomodulatory mAbs. Only the anti-CD27/CD20 combination provided cures. This was apparent in multiple lymphoma models, including huCD27 transgenic mice using the anti-huCD27, varlilumab. Detailed mechanistic analysis using single-cell RNA sequencing demonstrated that anti-CD27 stimulated CD8+ T and natural killer cells to release myeloid chemo-attractants and interferon gamma, to elicit myeloid infiltration and macrophage activation. This study demonstrates the therapeutic advantage of using an immunomodulatory mAb to regulate lymphoid cells, which then recruit and activate myeloid cells for enhanced killing of mAb-opsonized tumors.
Archive | 2017
Matthew J. Carter; Kerry L. Cox; Stuart Blakemore; Anna H. Turaj; Robert J. Oldham; Lekh N. Dahal; Stacey Tannheimer; Francesco Forconi; Graham Packham; Mark S. Cragg
PI3Kδ plays pivotal roles in the maintenance, proliferation and survival of malignant B-lymphocytes. Although not curative, PI3Kδ inhibitors (PI3Kδi) demonstrate impressive clinical efficacy and, alongside other signaling inhibitors, are revolutionizing the treatment of hematological malignancies. However, only limited in vivo data are available regarding their mechanism of action. With the rising number of novel treatments, the challenge is to identify combinations that deliver curative regimes. A deeper understanding of the molecular mechanism is required to guide these selections. Currently, immunomodulation, inhibition of B-cell receptor signaling, chemokine/cytokine signaling and apoptosis represent potential therapeutic mechanisms for PI3Kδi. Here we characterize the molecular mechanisms responsible for PI3Kδi-induced apoptosis in an in vivo model of chronic lymphocytic leukemia (CLL). In vitro, PI3Kδi-induced substantive apoptosis and disrupted microenvironment-derived signaling in murine (Eμ-Tcl1) and human (CLL) leukemia cells. Furthermore, PI3Kδi imparted significant therapeutic responses in Eμ-Tcl1-bearing animals and enhanced anti-CD20 monoclonal antibody therapy. Responses correlated with upregulation of the pro-apoptotic BH3-only protein Bim. Accordingly, Bim−/− Eμ-Tcl1 Tg leukemias demonstrated resistance to PI3Kδi-induced apoptosis were refractory to PI3Kδi in vivo and failed to display combination efficacy with anti-CD20 monoclonal antibody therapy. Therefore, Bim-dependent apoptosis represents a key in vivo therapeutic mechanism for PI3Kδi, both alone and in combination therapy regimes.
Leukemia | 2017
Matthew J. Carter; Kerry L. Cox; Stuart Blakemore; Anna H. Turaj; Robert J. Oldham; Lekh N. Dahal; Stacey Tannheimer; Francesco Forconi; Graham Packham; Mark S. Cragg
PI3Kδ plays pivotal roles in the maintenance, proliferation and survival of malignant B-lymphocytes. Although not curative, PI3Kδ inhibitors (PI3Kδi) demonstrate impressive clinical efficacy and, alongside other signaling inhibitors, are revolutionizing the treatment of hematological malignancies. However, only limited in vivo data are available regarding their mechanism of action. With the rising number of novel treatments, the challenge is to identify combinations that deliver curative regimes. A deeper understanding of the molecular mechanism is required to guide these selections. Currently, immunomodulation, inhibition of B-cell receptor signaling, chemokine/cytokine signaling and apoptosis represent potential therapeutic mechanisms for PI3Kδi. Here we characterize the molecular mechanisms responsible for PI3Kδi-induced apoptosis in an in vivo model of chronic lymphocytic leukemia (CLL). In vitro, PI3Kδi-induced substantive apoptosis and disrupted microenvironment-derived signaling in murine (Eμ-Tcl1) and human (CLL) leukemia cells. Furthermore, PI3Kδi imparted significant therapeutic responses in Eμ-Tcl1-bearing animals and enhanced anti-CD20 monoclonal antibody therapy. Responses correlated with upregulation of the pro-apoptotic BH3-only protein Bim. Accordingly, Bim−/− Eμ-Tcl1 Tg leukemias demonstrated resistance to PI3Kδi-induced apoptosis were refractory to PI3Kδi in vivo and failed to display combination efficacy with anti-CD20 monoclonal antibody therapy. Therefore, Bim-dependent apoptosis represents a key in vivo therapeutic mechanism for PI3Kδi, both alone and in combination therapy regimes.
Cancer Research | 2017
Anna H. Turaj; Lekh N. Dahal; Stephen A. Beers; Mark S. Cragg; Sean H. Lim
Charlebois and colleagues recently reported that the antitumor activity of anti-ErbB2 mAb is enhanced by local polyI:C and CpG administration in murine breast tumor models ([1][1]) and concluded that this activity was dependent on IFNs, CD8+ T, and natural killer (NK) cells. The requirement for NK
Journal of Leukocyte Biology | 2018
Ali Roghanian; Richard J. Stopforth; Lekh N. Dahal; Mark S. Cragg
The Fc gamma receptor IIB (FcγRIIB/CD32B) was generated million years ago during evolution. It is the sole inhibitory receptor for IgG, and has long been associated with the regulation of humoral immunity and innate immune homeostasis. However, new and surprising functions of FcγRIIB are emerging. In particular, FcγRIIB has been shown to perform unexpected activatory roles in both immune‐signaling and monoclonal antibody (mAb) immunotherapy. Furthermore, although ITIM signaling is an integral part of FcγRIIB regulatory activity, it is now clear that inhibition/activation of immune responses can occur independently of the ITIM. In light of these new findings, we present an overview of the established and noncanonical functions of FcγRIIB and discuss how this knowledge might be exploited therapeutically.