Leon H.F. Mullenders
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leon H.F. Mullenders.
Molecular Cell | 2001
Marcel Volker; Martijn J. Moné; Parimal Karmakar; Anneke van Hoffen; Wouter Schul; Wim Vermeulen; Jan H.J. Hoeijmakers; Roel van Driel; Albert A. van Zeeland; Leon H.F. Mullenders
Here, we describe the assembly of the nucleotide excision repair (NER) complex in normal and repair-deficient (xeroderma pigmentosum) human cells, employing a novel technique of local UV irradiation combined with fluorescent antibody labeling. The damage recognition complex XPC-hHR23B appears to be essential for the recruitment of all subsequent NER factors in the preincision complex, including transcription repair factor TFIIH. XPA associates relatively late, is required for anchoring of ERCC1-XPF, and may be essential for activation of the endonuclease activity of XPG. These findings identify XPC as the earliest known NER factor in the reaction mechanism, give insight into the order of subsequent NER components, provide evidence for a dual role of XPA, and support a concept of sequential assembly of repair proteins at the site of the damage rather than a preassembled repairosome.
Cell Research | 2008
Maria Fousteri; Leon H.F. Mullenders
The encounter of elongating RNA polymerase II (RNAPIIo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract prolonged blockage of transcription, the cell removes the RNAPIIo-blocking DNA lesions by transcription-coupled repair (TC-NER), a specialized subpathway of nucleotide excision repair (NER). Exposure of mice to UVB light or chemicals has elucidated that TC-NER is a critical survival pathway protecting against acute toxic and long-term effects (cancer) of genotoxic exposure. Deficiency in TC-NER is associated with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). Recent data suggest that CSA and CSB play differential roles in mammalian TC-NER: CSB as a repair coupling factor to attract NER proteins, chromatin remodellers and the CSA- E3-ubiquitin ligase complex to the stalled RNAPIIo. CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFIIS. The emerging picture of TC-NER is complex: repair of transcription-blocking lesions occurs without displacement of the DNA damage-stalled RNAPIIo, and requires at least two essential assembly factors (CSA and CSB), the core NER factors (except for XPC-RAD23B), and TC-NER specific factors. These and yet unidentified proteins will accomplish not only efficient repair of transcription-blocking lesions, but are also likely to contribute to DNA damage signalling events.
Molecular Cell | 2010
Tomoo Ogi; Siripan Limsirichaikul; René M. Overmeer; Marcel Volker; Katsuya Takenaka; Ross Cloney; Yuka Nakazawa; Atsuko Niimi; Yoshio Miki; Nicolaas G. J. Jaspers; Leon H.F. Mullenders; Shunichi Yamashita; Maria Fousteri; Alan R. Lehmann
Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has not yet been established. We report that, in human fibroblasts, approximately half of the repair synthesis requires both pol kappa and pol delta, and both polymerases can be recovered in the same repair complexes. Pol kappa is recruited to repair sites by ubiquitinated PCNA and XRCC1 and pol delta by the classical replication factor complex RFC1-RFC, together with a polymerase accessory factor, p66, and unmodified PCNA. The remaining repair synthesis is dependent on pol epsilon, recruitment of which is dependent on the alternative clamp loader CTF18-RFC.
Journal of Cell Biology | 2009
Martijn S. Luijsterburg; Christoffel Dinant; Hannes Lans; Jan Stap; Elzbieta Wiernasz; Saskia Lagerwerf; Daniël O. Warmerdam; Michael Lindh; Maartje C. Brink; Jurek Dobrucki; Jacob A. Aten; Maria Fousteri; Gert Jansen; Nico P. Dantuma; Wim Vermeulen; Leon H.F. Mullenders; Adriaan B. Houtsmuller; Pernette J. Verschure; Roel van Driel
Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-α, HP1-β, and HP1-γ are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in human cells. This response to DNA damage requires the chromo shadow domain of HP1 and is independent of H3K9 trimethylation and proteins that detect UV damage and DSBs. Loss of HP1 results in high sensitivity to UV light and ionizing radiation in the nematode Caenorhabditis elegans, indicating that HP1 proteins are essential components of DNA damage response (DDR) systems. Analysis of single and double HP1 mutants in nematodes suggests that HP1 homologues have both unique and overlapping functions in the DDR. Our results show that HP1 proteins are important for DNA repair and may function to reorganize chromatin in response to damage.
Development | 2006
Joanne G.W. Nijhof; Kristin M. Braun; Adam Giangreco; Carina van Pelt; Hiroshi Kawamoto; Richard L. Boyd; Rein Willemze; Leon H.F. Mullenders; Fiona M. Watt; Frank R. de Gruijl; Willem van Ewijk
We describe a novel murine progenitor cell population localised to a previously uncharacterised region between sebaceous glands and the hair follicle bulge, defined by its reactivity to the thymic epithelial progenitor cell marker MTS24. MTS24 labels a membrane-bound antigen present during the early stages of hair follicle development and in adult mice. MTS24 co-localises with expression of α6-integrin and keratin 14, indicating that these cells include basal keratinocytes. This novel population does not express the bulge-specific stem cell markers CD34 or keratin 15, and is infrequently BrdU label retaining. MTS24-positive and -negative keratinocyte populations were isolated by flow cytometry and assessed for colony-forming efficiency. MTS24-positive keratinocytes exhibited a two-fold increase in colony formation and colony size compared to MTS24-negative basal keratinocytes. In addition, both the MTS24-positive and CD34-positive subpopulations were capable of producing secondary colonies after serial passage of individual cell clones. Finally, gene expression profiles of MTS24 and CD34 subpopulations were compared. These results showed that the overall gene expression profile of MTS24-positive cells resembles the pattern previously reported in bulge stem cells. Taken together, these data suggest that the cell-surface marker MTS24 identifies a new reservoir of hair follicle keratinocytes with a proliferative capacity and gene expression profile suggestive of progenitor or stem cells.
EMBO Reports | 2001
Martijn J. Moné; Marcel Volker; Osamu Nikaido; Leon H.F. Mullenders; Albert A. van Zeeland; Pernette J. Verschure; Erik M. M. Manders; Roel van Driel
UV‐induced DNA damage causes cells to repress RNA synthesis and to initiate nucleotide excision repair (NER). NER and transcription are intimately linked processes. Evidence has been presented that, in addition to damaged genes, undamaged loci are transcriptionally inhibited. We investigated whether RNA synthesis from undamaged genes is affected by the presence of UV damage elsewhere in the same nucleus, using a novel technique to UV irradiate only part of a nucleus. We show that the basal transcription/repair factor TFIIH is recruited to the damaged nuclear area, partially depleting the undamaged nuclear area. Remarkably, this sequestration has no effect on RNA synthesis. This result was obtained for cells that are able to carry out NER and for cells deficient in NER. We conclude that cross talk between NER and transcription occurs only over short distances in nuclei of living cells.
Nucleic Acids Research | 1979
Peter A. Dijkwel; Leon H.F. Mullenders; Friedrich Wanka
The attachment of replicating DNA to a rapidly sedimenting nuclear structure was investigated by digestion with various nucleases. When DNA was gradually removed by DNase I, pulse label incorporated during either 1 min or during 1 hour in the presence of arabinosylcytosine, remained preferentially attached to the nuclear structure. Single strand specific digestion by nuclease S1 or staphylococcal nuclease at low concentrations caused a release of about 30% of the pulse label, without significantly affecting the attachment of randomly labelled DNA. The released material had a low sedimentation coefficient and contained most of the Okasaki fragments. The remaining pulse label was less accessible to further digestion by double strand specific nuclease activity than the bulk DNA. The results suggest that an attachment of the replication fork to the nuclear structure occurs at sites behind but close to the branch point.
DNA Repair | 2011
Saskia Lagerwerf; Mischa G. Vrouwe; René M. Overmeer; Maria Fousteri; Leon H.F. Mullenders
A network of DNA damage surveillance systems is triggered by sensing of DNA lesions and the initiation of a signal transduction cascade that activates genome-protection pathways including nucleotide excision repair (NER). NER operates through coordinated assembly of repair factors into pre- and post-incision complexes. Recent work identifies RPA as a key regulator of the transition from dual incision to repair-synthesis in UV-irradiated non-cycling cells, thereby averting the generation of unprocessed repair intermediates. These intermediates could lead to recombinogenic events and trigger a persistent ATR-dependent checkpoint signaling. It is now evident that DNA damage signaling is not limited to NER proficient cells. ATR-dependent checkpoint activation also occurs in UV-exposed non-cycling repair deficient cells coinciding with the formation of endonuclease APE1-mediated DNA strand breaks. In addition, the encounter of elongating RNA polymerase II (RNAPIIo) with DNA damage lesions and its persistent stalling provides a strong DNA damage signaling leading to cell cycle arrest, apoptosis and increased mutagenesis. The mechanism underlying the strong and strand specific induction of UV-induced mutations in NER deficient cells has been recently resolved by the finding that gene transcription itself increases UV-induced mutagenesis in a strand specific manner via increased deamination of cytosines. The cell removes the RNAPIIo-blocking DNA lesions by transcription-coupled repair (TC-NER) without displacement of the DNA damage stalled RNAPIIo. Deficiency in TC-NER associates with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). CSB functions as a repair coupling factor to attract NER proteins, chromatin remodelers and the CSA-E3-ubiquitin ligase complex to the stalled RNAPIIo; CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFIIS. The molecular mechanisms by which these proteins bring about efficient TC-NER and trigger signaling after transcription arrest remain elusive; particularly the role of chromatin remodeling in TC-NER needs to be clarified in the context of anticipated structural changes that allow repair and transcription restart.
Journal of Cell Biology | 2012
Alex Pines; Mischa G. Vrouwe; Jurgen A. Marteijn; Dimitris Typas; Martijn S. Luijsterburg; Medine Cansoy; Paul J. Hensbergen; André M. Deelder; Anton J.L. de Groot; Syota Matsumoto; Kaoru Sugasawa; Nicolas H. Thomä; Wim Vermeulen; Harry Vrieling; Leon H.F. Mullenders
PARP1-mediated poly(ADP-ribosyl)ation of DDB2 prolongs its occupation on UV-damaged chromatin and promotes the recruitment of the chromatin remodeler ALC1.
Nature | 2015
Maria Tresini; Daniël O. Warmerdam; Petros Kolovos; Loes Snijder; Mischa G. Vrouwe; Jeroen Demmers; Wilfred van IJcken; Frank Grosveld; René H. Medema; Jan H.J. Hoeijmakers; Leon H.F. Mullenders; Wim Vermeulen; Jurgen A. Marteijn
In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.