Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardo Ceravolo is active.

Publication


Featured researches published by Leonardo Ceravolo.


Cerebral Cortex | 2012

Specific Brain Networks during Explicit and Implicit Decoding of Emotional Prosody

Sascha Frühholz; Leonardo Ceravolo; Didier Maurice Grandjean

To better define the underlying brain network for the decoding of emotional prosody, we recorded high-resolution brain scans during an implicit and explicit decoding task of angry and neutral prosody. Several subregions in the right superior temporal gyrus (STG) and bilateral in the inferior frontal gyrus (IFG) were sensitive to emotional prosody. Implicit processing of emotional prosody engaged regions in the posterior superior temporal gyrus (pSTG) and bilateral IFG subregions, whereas explicit processing relied more on mid STG, left IFG, amygdala, and subgenual anterior cingulate cortex. Furthermore, whereas some bilateral pSTG regions and the amygdala showed general sensitivity to prosody-specific acoustical features during implicit processing, activity in inferior frontal brain regions was insensitive to these features. Together, the data suggest a differentiated STG, IFG, and subcortical network of brain regions, which varies with the levels of processing and shows a higher specificity during explicit decoding of emotional prosody.


NeuroImage | 2014

Sleep sharpens sensory stimulus coding in human visual cortex after fear conditioning.

Virginie Sterpenich; Camille Piguet; Martin Desseilles; Leonardo Ceravolo; Markus Gschwind; Dimitri Van De Ville; Patrik Vuilleumier; Sophie Schwartz

Efficient perceptual identification of emotionally-relevant stimuli requires optimized neural coding. Because sleep contributes to neural plasticity mechanisms, we asked whether the perceptual representation of emotionally-relevant stimuli within sensory cortices is modified after a period of sleep. We show combined effects of sleep and aversive conditioning on subsequent discrimination of face identity information, with parallel plasticity in the amygdala and visual cortex. After one night of sleep (but neither immediately nor after an equal waking interval), a fear-conditioned face was better detected when morphed with another identity. This behavioral change was accompanied by increased selectivity of the amygdala and face-responsive fusiform regions. Overnight neural changes can thus sharpen the representation of threat-related stimuli in cortical sensory areas, in order to improve detection in impoverished or ambiguous situations. These findings reveal an important role of sleep in shaping cortical selectivity to emotionally-relevant cues and thus promoting adaptive responses to new dangers.


Social Cognitive and Affective Neuroscience | 2016

Structural and functional connectivity of the subthalamic nucleus during vocal emotion decoding

Julie Anne Peron; Sascha Frühholz; Leonardo Ceravolo; Didier Maurice Grandjean

Our understanding of the role played by the subthalamic nucleus (STN) in human emotion has recently advanced with STN deep brain stimulation, a neurosurgical treatment for Parkinsons disease and obsessive-compulsive disorder. However, the potential presence of several confounds related to pathological models raises the question of how much they affect the relevance of observations regarding the physiological function of the STN itself. This underscores the crucial importance of obtaining evidence from healthy participants. In this study, we tested the structural and functional connectivity between the STN and other brain regions related to vocal emotion in a healthy population by combining diffusion tensor imaging and psychophysiological interaction analysis from a high-resolution functional magnetic resonance imaging study. As expected, we showed that the STN is functionally connected to the structures involved in emotional prosody decoding, notably the orbitofrontal cortex, inferior frontal gyrus, auditory cortex, pallidum and amygdala. These functional results were corroborated by probabilistic fiber tracking, which revealed that the left STN is structurally connected to the amygdala and the orbitofrontal cortex. These results confirm, in healthy participants, the role played by the STN in human emotion and its structural and functional connectivity with the brain network involved in vocal emotions.


Social Cognitive and Affective Neuroscience | 2016

Proximal Vocal Threat Recruits The Right Voice-Sensitive Auditory Cortex

Leonardo Ceravolo; Sascha Frühholz; Didier Maurice Grandjean

The accurate estimation of the proximity of threat is important for biological survival and to assess relevant events of everyday life. We addressed the question of whether proximal as compared with distal vocal threat would lead to a perceptual advantage for the perceiver. Accordingly, we sought to highlight the neural mechanisms underlying the perception of proximal vs distal threatening vocal signals by the use of functional magnetic resonance imaging. Although we found that the inferior parietal and superior temporal cortex of human listeners generally decoded the spatial proximity of auditory vocalizations, activity in the right voice-sensitive auditory cortex was specifically enhanced for proximal aggressive relative to distal aggressive voices as compared with neutral voices. Our results shed new light on the processing of imminent danger signaled by proximal vocal threat and show the crucial involvement of the right mid voice-sensitive auditory cortex in such processing.


Frontiers in Neuroscience | 2016

Modulation of Auditory Spatial Attention by Angry Prosody: An fMRI Auditory Dot-Probe Study

Leonardo Ceravolo; Sascha Frühholz; Didier Maurice Grandjean

Emotional stimuli have been shown to modulate attentional orienting through signals sent by subcortical brain regions that modulate visual perception at early stages of processing. Fewer studies, however, have investigated a similar effect of emotional stimuli on attentional orienting in the auditory domain together with an investigation of brain regions underlying such attentional modulation, which is the general aim of the present study. Therefore, we used an original auditory dot-probe paradigm involving simultaneously presented neutral and angry non-speech vocal utterances lateralized to either the left or the right auditory space, immediately followed by a short and lateralized single sine wave tone presented in the same (valid trial) or in the opposite space as the preceding angry voice (invalid trial). Behavioral results showed an expected facilitation effect for target detection during valid trials while functional data showed greater activation in the middle and posterior superior temporal sulci (STS) and in the medial frontal cortex for valid vs. invalid trials. The use of reaction time facilitation [absolute value of the Z-score of valid-(invalid+neutral)] as a group covariate extended enhanced activity in the amygdalae, auditory thalamus, and visual cortex. Taken together, our results suggest the involvement of a large and distributed network of regions among which the STS, thalamus, and amygdala are crucial for the decoding of angry prosody, as well as for orienting and maintaining attention within an auditory space that was previously primed by a vocal emotional event.


Scientific Reports | 2018

The behavioral and neural binding phenomena during visuomotor integration of angry facial expressions

Sélim Yahia Coll; Leonardo Ceravolo; Sascha Frühholz; Didier Maurice Grandjean

Different parts of our brain code the perceptual features and actions related to an object, causing a binding problem, in which the brain has to integrate information related to an event without any interference regarding the features and actions involved in other concurrently processed events. Using a paradigm similar to Hommel, who revealed perception-action bindings, we showed that emotion could bind with motor actions when relevant, and in specific conditions, irrelevant for the task. By adapting our protocol to a functional Magnetic Resonance Imaging paradigm we investigated, in the present study, the neural bases of the emotion-action binding with task-relevant angry faces. Our results showed that emotion bound with motor responses. This integration revealed increased activity in distributed brain areas involved in: (i) memory, including the hippocampi; (ii) motor actions with the precentral gyri; (iii) and emotion processing with the insula. Interestingly, increased activations in the cingulate gyri and putamen, highlighted their potential key role in the emotion-action binding, due to their involvement in emotion processing, motor actions, and memory. The present study confirmed our previous results and point out for the first time the functional brain activity related to the emotion-action association.


Scientific Reports | 2017

Associating a product with a luxury brand label modulates neural reward processing and favors choices in materialistic individuals

Catherine Audrin; Leonardo Ceravolo; Julien Chanal; Tobias Brosch; David Sander

The present study investigated the extent to which luxury vs. non-luxury brand labels (i.e., extrinsic cues) randomly assigned to items and preferences for these items impact choice, and how this impact may be moderated by materialistic tendencies (i.e., individual characteristics). The main objective was to investigate the neural correlates of abovementioned effects using functional magnetic resonance imaging. Behavioural results showed that the more materialistic people are, the more they choose and like items labelled with luxury brands. Neuroimaging results revealed the implication of a neural network including the dorsolateral and ventromedial prefrontal cortex and the orbitofrontal cortex that was modulated by the brand label and also by the participants’ preference. Most importantly, items with randomly assigned luxurious brand labels were preferentially chosen by participants and triggered enhanced signal in the caudate nucleus. This effect increased linearly with materialistic tendencies. Our results highlight the impact of brand-item association, although random in our study, and materialism on preference, relying on subparts of the brain valuation system for the integration of extrinsic cues, preferences and individual characteristics.


Cognitive, Affective, & Behavioral Neuroscience | 2018

Goal-relevant situations facilitate memory of neutral faces

Alison Montagrin; Virginie Sterpenich; Tobias Brosch; Didier Maurice Grandjean; Jorge Armony; Leonardo Ceravolo; David Sander

Emotional situations are typically better remembered than neutral situations, but the psychological conditions and brain mechanisms underlying this effect remain debated. Stimulus valence and affective arousal have been suggested to explain the major role of emotional stimuli in memory facilitation. However, neither valence nor arousal are sufficient affective dimensions to explain the effect of memory facilitation. Several studies showed that negative and positive details are better remembered than neutral details. However, other studies showed that neutral information encoded and coupled with arousal did not result in a memory advantage compared with neutral information not coupled with arousal. Therefore, we suggest that the fundamental affective dimension responsible for memory facilitation is goal relevance. To test this hypothesis at behavioral and neural levels, we conducted a functional magnetic resonance imaging study and used neutral faces embedded in goal-relevant or goal-irrelevant daily life situations. At the behavioral level, we found that neutral faces encountered in goal-relevant situations were better remembered than those encountered in goal-irrelevant situations. To explain this effect, we studied neural activations involved in goal-relevant processing at encoding and in subsequent neutral face recognition. At encoding, activation of emotional brain regions (anterior cingulate, ventral striatum, ventral tegmental area, and substantia nigra) was greater for processing of goal-relevant situations than for processing of goal-irrelevant situations. At the recognition phase, despite the presentation of neutral faces, brain activation involved in social processing (superior temporal sulcus) to successfully remember identities was greater for previously encountered faces in goal-relevant than in goal-irrelevant situations.


Scientific Reports | 2017

Biased and unbiased perceptual decision-making on vocal emotions

Mihai Dricu; Leonardo Ceravolo; Didier Maurice Grandjean; Sascha Frühholz

Perceptual decision-making on emotions involves gathering sensory information about the affective state of another person and forming a decision on the likelihood of a particular state. These perceptual decisions can be of varying complexity as determined by different contexts. We used functional magnetic resonance imaging and a region of interest approach to investigate the brain activation and functional connectivity behind two forms of perceptual decision-making. More complex unbiased decisions on affective voices recruited an extended bilateral network consisting of the posterior inferior frontal cortex, the orbitofrontal cortex, the amygdala, and voice-sensitive areas in the auditory cortex. Less complex biased decisions on affective voices distinctly recruited the right mid inferior frontal cortex, pointing to a functional distinction in this region following decisional requirements. Furthermore, task-induced neural connectivity revealed stronger connections between these frontal, auditory, and limbic regions during unbiased relative to biased decision-making on affective voices. Together, the data shows that different types of perceptual decision-making on auditory emotions have distinct patterns of activations and functional coupling that follow the decisional strategies and cognitive mechanisms involved during these perceptual decisions.


Brain and Language | 2017

Sleep deprivation disrupts the contribution of the hippocampus to the formation of novel lexical associations

Virginie Sterpenich; Leonardo Ceravolo; Sophie Schwartz

HighlightsSleep deprivation prevents the integration of new information into lexical networks.Sleep deprivation impairs the consolidation of recently learned nonwords.Sleep boost the lexical access to words orthographically‐close to learned nonwords.Sleep‐related updating of lexical representations implicates hippocampo‐frontal circuitry.Sleep promotes a local remodeling of lexical networks after new words learning. Abstract Sleep is involved in the mechanisms underlying memory consolidation and brain plasticity. Consolidation refers to a process through which labile memories are reorganized into more stable ones. An intriguing but often neglected question concerns how pre‐existing knowledge is modified when new information enters memory, and whether sleep can influence this process. We investigated how nonword learning may modify the neural representations of closely‐related existing words. We also tested whether sleep contributes to any such effect by comparing a group of participants who slept during the night following a first encoding session to a sleep deprived group. Thirty participants were first intensively trained at writing nonwords on Day 1 (remote nonwords) and Day 4 (recent nonwords), following which they underwent functional MRI. This session consisted of a word lexical decision task including words orthographically‐close to the trained nonwords, followed by an incidental memory task on the nonwords. Participants who slept detected real words related to remote nonwords faster than those related to recent nonwords, and showed better explicit memory for the remote nonwords. Although the full interaction comparing both groups for these effects was not significant, we found that participants from the sleep‐deprivation group did not display such differences between remote and recent conditions. Imaging results revealed that the functional interplay between hippocampus and frontal regions critically mediated these behavioral effects. This study demonstrates that sleep may not only strengthen memory for recently learned items but also promotes a constant reorganization of existing networks of word representations, allowing facilitated access to orthographically‐close words.

Collaboration


Dive into the Leonardo Ceravolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitri Van De Ville

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge