Leonie de Boer
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonie de Boer.
The FASEB Journal | 2010
Paulus H. S. Kwakman; Anje A. te Velde; Leonie de Boer; Dave Speijer; Christina M. J. E. Vandenbroucke-Grauls; Sebastian A. J. Zaat
With the rise in prevalence of antibioticresistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical‐grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria tested, including Bacillus subtilis, methicillin‐resistant Staphylococcus aureus, extended‐spectrum ß‐lactamase producing Escherichia coli, ciprofloxacin‐resistant Pseudomonas aeruginosa, and vancomycin‐resistant Enterococcus faecium, were killed by 10–20% (v/v) honey, whereas ≥40% (v/v) of a honey‐equivalent sugar solution was required for similar activity. Honey accumulated up to 5.62 ± 0.54 mM H2O2 and contained 0.25 ± 0.01 mM methylglyoxal (MGO). After enzymatic neutralization of these two compounds, honey retained substantial activity. Using B. subtilis for activity‐guided isolation of the additional antimicrobial factors, we discovered bee defensin‐1 in honey. After combined neutralization of H2O2, MGO, and bee defensin‐1, 20% honey had only minimal activity left, and subsequent adjustment of the pH of this honey from 3.3 to 7.0 reduced the activity to that of sugar alone. Activity against all other bacteria tested depended on sugar, H2O2, MGO, and bee defensin‐1. Thus, we fully characterized the antibacterial activity of medical‐grade honey.—Kwakman, P. H. S., te Velde, A. A., de Boer, L., Speijer, D., Vandenbroucke‐Grauls, C. M.J. E., Zaat, S. A.J. How honey kills bacteria. FASEB J. 24, 2576–2582 (2010). www.fasebj.org
PLOS ONE | 2010
Leonard T. Nguyen; Johnny K. Chau; Nicole A. Perry; Leonie de Boer; Sebastian A. J. Zaat; Hans J. Vogel
Background Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the “antimicrobial centre” of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library. Methodology/Principal Findings HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum. Conclusions/Significance Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications.
PLOS ONE | 2011
Paulus H. S. Kwakman; Anje A. te Velde; Leonie de Boer; Christina M. J. E. Vandenbroucke-Grauls; Sebastian A. J. Zaat
Honey is increasingly valued for its antibacterial activity, but knowledge regarding the mechanism of action is still incomplete. We assessed the bactericidal activity and mechanism of action of Revamil® source (RS) honey and manuka honey, the sources of two major medical-grade honeys. RS honey killed Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa within 2 hours, whereas manuka honey had such rapid activity only against B. subtilis. After 24 hours of incubation, both honeys killed all tested bacteria, including methicillin-resistant Staphylococcus aureus, but manuka honey retained activity up to higher dilutions than RS honey. Bee defensin-1 and H2O2 were the major factors involved in rapid bactericidal activity of RS honey. These factors were absent in manuka honey, but this honey contained 44-fold higher concentrations of methylglyoxal than RS honey. Methylglyoxal was a major bactericidal factor in manuka honey, but after neutralization of this compound manuka honey retained bactericidal activity due to several unknown factors. RS and manuka honey have highly distinct compositions of bactericidal factors, resulting in large differences in bactericidal activity.
Clinical Infectious Diseases | 2008
Paulus H. S. Kwakman; Johannes P. C. Van den Akker; Ahmet Güçlü; Hamid Aslami; Jan M. Binnekade; Leonie de Boer; Laura Boszhard; Frederique Paulus; Pauline Middelhoek; Anje A. te Velde; Christina M. J. E. Vandenbroucke-Grauls; Marcus J. Schultz; Sebastian A. J. Zaat
BACKGROUND Antibiotic resistance among microbes urgently necessitates the development of novel antimicrobial agents. Since ancient times, honey has been used successfully for treatment of infected wounds, because of its antibacterial activity. However, large variations in the in vitro antibacterial activity of various honeys have been reported and hamper its acceptance in modern medicine. METHODS We assessed the in vitro bactericidal activity of Revamil (Bfactory), a medical-grade honey produced under controlled conditions, and assessed its efficacy for reduction of forearm skin colonization in healthy volunteers in a within-subject-controlled trial. RESULTS With Bacillus subtilis as a test strain, we demonstrated that the variation in bactericidal activity of 11 batches of medical-grade honey was <2-fold. Antibiotic-susceptible and -resistant isolates of Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, and Klebsiella oxytoca were killed within 24 h by 10%-40% (vol/vol) honey. After 2 days of application of honey, the extent of forearm skin colonization in healthy volunteers was reduced 100-fold (P < .001), and the numbers of positive skin cultures were reduced by 76% (P < .001). CONCLUSIONS Revamil is a promising topical antimicrobial agent for prevention or treatment of infections, including those caused by multidrug-resistant bacteria.
Journal of Investigative Dermatology | 2013
Angelic M. G. van der Aar; Daisy I. Picavet; Femke J. M. Muller; Leonie de Boer; Toni M.M. van Capel; Sebastian A. J. Zaat; Jan D. Bos; Hans Janssen; Thaddeus C. George; Martien L. Kapsenberg; S. Marieke van Ham; Marcel B. M. Teunissen; Esther C. de Jong
The mechanisms preventing detrimental T-cell responses against commensal skin bacteria remain elusive. Using monocyte-derived and skin-derived dendritic cells (DCs), we demonstrate that epidermal Langerhans cells (LCs), the DCs in the most superficial layer of the skin, have a poor capacity to internalize bacteria because of low expression of FcγRIIa. Furthermore, LCs show deficiency in processing and major histocompatibility complex II (MHC-II)-restricted presentation of bacterial antigens, as a result of a decreased expression of molecules involved in these functionalities. The reduced capacity to take up, process, and present bacterial antigens cannot be restored by LC activation by ectopically expressed Toll-like receptors or by cytokines. Consequently, bacteria-primed LCs poorly restimulate antibacterial memory CD4(+) T cells and inefficiently induce bacteria-specific effector CD4(+) T cells from naive T cells; however, they initiate the development of regulatory Foxp3(+)CD4(+) T cells, which are able to suppress the proliferation of autologous bystander T cells specific for the same bacteria. In contrast, dermal DCs that reside in the deeper dermal layer of the skin efficiently present bacterial antigens and provoke robust antibacterial naive and memory CD4(+) T-cell responses. In conclusion, LCs form a unique DC subset that is adapted at multiple levels for the maintenance of tolerance to bacterial skin flora.
Blood | 2012
Jeroen den Dunnen; Lisa T. C. Vogelpoel; Tomasz Wypych; Femke J. M. Muller; Leonie de Boer; Taco W. Kuijpers; Sebastiaan A. J. Zaat; Martien L. Kapsenberg; Esther C. de Jong
Dendritic cells (DCs) are essential in inducing adaptive immune responses against bacteria by expressing cytokines that skew T-cell responses toward protective Th17 cells. Although it is widely recognized that induction of these cytokines by DCs involves activation of multiple receptors, it is still incompletely characterized which combination of receptors specifically skews Th17-cell responses. Here we have identified a novel role for FcγRIIa in promoting human Th17 cells. Activation of DCs by bacteria opsonized by serum IgG strongly promoted Th17 responses, which was FcγRIIa-dependent and coincided with enhanced production of selected cytokines by DCs, including Th17-promoting IL-1β and IL-23. Notably, FcγRIIa stimulation on DCs did not induce cytokine production when stimulated individually, but selectively amplified cytokine responses through synergy with TLR2, 4, or 5. Importantly, this synergy is mediated at 2 different levels. First, TLR-FcγRIIa costimulation strongly increased transcription of pro-IL-1β and IL-23p19. Second, FcγRIIa triggering induced activation of caspase-1, which cleaves pro-IL-1β into its bioactive form and thereby enhanced IL-1β secretion. Taken together, these data identified cross-talk between TLRs and FcγRIIa as a novel mechanism by which DCs promote protective effector Th17-cell responses against bacteria.
Infection and Immunity | 2007
Corine A.N. Broekhuizen; Leonie de Boer; Kim Schipper; Christopher D. Jones; Shan Quadir; Roger G. Feldman; J. Dankert; Christina M. J. E. Vandenbroucke-Grauls; Jan J. Weening; Sebastian A. J. Zaat
ABSTRACT Biomaterial-associated infections (BAI), which are predominantly caused by Staphylococcus epidermidis, are a significant problem in modern medicine. Biofilm formation is considered the pivotal element in the pathogenesis, but in previous mouse studies we retrieved S. epidermidis from peri-implant tissue. To assess the kinetics and generality of tissue colonization, we investigated BAI using two S. epidermidis strains, two biomaterials, and two mouse strains. With small inocula all implants were culture negative, whereas surrounding tissues were positive. When higher doses were used, tissues were culture positive more often than implants, with higher numbers of CFU. This was true for the different biomaterials tested, for both S. epidermidis strains, at different times, and for both mouse strains. S. epidermidis colocalized with host cells at a distance that was >10 cell layers from the biomaterial-tissue interface. We concluded that in mouse experimental BAI S. epidermidis peri-implant tissue colonization is more important than biofilm formation.
BMC Genomics | 2013
Wouter J. Veneman; Oliver W. Stockhammer; Leonie de Boer; Sebastian A. J. Zaat; Annemarie H. Meijer; Herman P. Spaink
BackgroundStaphylococcus epidermidis bacteria are a major cause of biomaterial-associated infections in modern medicine. Yet there is little known about the host responses against this normally innocent bacterium in the context of infection of biomaterials. In order to better understand the factors involved in this process, a whole animal model with high throughput screening possibilities and markers for studying the host response to S. epidermidis infection are required.ResultsWe have used a zebrafish yolk injection system to study bacterial proliferation and the host response in a time course experiment of S. epidermidis infection. By combining an automated microinjection system with complex object parametric analysis and sorting (COPAS) technology we have quantified bacterial proliferation. This system was used together with transcriptome analysis at several time points during the infection period. We show that bacterial colony forming unit (CFU) counting can be replaced by high throughput flow-based fluorescence analysis of embryos enabling high throughput readout. Comparison of the host transcriptome response to S. epidermidis and Mycobacterium marinum infection in the same system showed that M. marinum has a far stronger effect on host gene regulation than S. epidermidis. However, multiple genes responded differently to S. epidermidis infection than to M. marinum, including a cell adhesion gene linked to specific infection by staphylococci in mammals.ConclusionsOur zebrafish embryo infection model allowed (i) quantitative assessment of bacterial proliferation, (ii) identification of zebrafish genes serving as markers for infection with the opportunistic pathogen S. epidermidis, and (iii) comparison of the transcriptome response of infection with S. epidermidis and with the pathogen M. marinum. As a result we have identified markers that can be used to distinguish common and specific responses to S. epidermidis. These markers enable the future integration of our high throughput screening technology with functional analyses of immune response genes and immune modulating factors.
Biochimica et Biophysica Acta | 2011
Leonard T. Nguyen; Leonie de Boer; Sebastian A. J. Zaat; Hans J. Vogel
The positively charged side chains of cationic antimicrobial peptides are generally thought to provide the initial long-range electrostatic attractive forces that guide them towards the negatively charged bacterial membranes. Peptide analogs were designed to examine the role of the four Arg side chains in the cathelicidin peptide tritrpticin (VRRFPWWWPFLRR). The analogs include several noncoded Arg and Lys derivatives that offer small variations in side chain length and methylation state. The peptides were tested for bactericidal and hemolytic activities, and their membrane insertion and permeabilization properties were characterized by leakage assays and fluorescence spectroscopy. A net charge of +5 for most of the analogs maintains their high antimicrobial activity and directs them towards preferential insertion into model bacterial membrane systems with a similar extent of burial of the Trp side chains. However the peptides exhibit significant functional differences. Analogs with methylated cationic side chains cause lower levels of membrane leakage and are associated with lower hemolytic activities, making them potentially attractive pharmaceutical candidates. Analogs containing the Arg guanidinium groups cause more membrane disruption than those containing the Lys amino groups. Peptides in the latter group with shorter side chains have increased membrane activity and conversely, elongating the Arg residue causes slightly higher membrane activity. Altogether, the potential for strong hydrogen bonding between the four positive Arg side chains with the phospholipid head groups seems to be a determinant for the membrane disruptive properties of tritrpticin and many related cationic antimicrobial peptides.
Acta Biomaterialia | 2014
Martijn Riool; Leonie de Boer; Valery Jaspers; Chris M. van der Loos; Willem J. B. van Wamel; Gang Wu; Paulus H. S. Kwakman; Sebastian A. J. Zaat
Infection is a major cause of failure of inserted or implanted biomedical devices (biomaterials). During surgery, bacteria may adhere to the implant, initiating biofilm formation. Bacteria are also observed in and recultured from the tissue surrounding implants, and may even reside inside host cells. Whether these bacteria originate from biofilms is not known. Therefore, we investigated the fate of Staphylococcus epidermidis inoculated on the surface of implants as adherent planktonic cells or as a biofilm in mouse experimental biomaterial-associated infection. In order to discriminate the challenge strain from potential contaminating mouse microflora, we constructed a fully virulent green fluorescent S. epidermidis strain. S. epidermidis injected along subcutaneous titanium implants, pre-seeded on the implants or pre-grown as biofilm, were retrieved from the implants as well as the surrounding tissue in all cases after 4days, and in histology bacteria were observed in the tissue co-localizing with macrophages. Thus, bacteria adherent to or in a biofilm on the implant are a potential source of infection of the surrounding tissue, and antimicrobial strategies should prevent both biofilm formation and tissue colonization.