Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonie Young is active.

Publication


Featured researches published by Leonie Young.


Breast Cancer Research | 2013

Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

Suzanne A. Eccles; Eric O. Aboagye; Simak Ali; Annie S. Anderson; Jo Armes; Fedor Berditchevski; Jeremy P. Blaydes; Keith Brennan; Nicola J. Brown; Helen E. Bryant; N.J. Bundred; Joy Burchell; Anna Campbell; Jason S. Carroll; Robert B. Clarke; Charlotte E. Coles; Gary Cook; Angela Cox; Nicola J. Curtin; Lodewijk V. Dekker; Isabel dos Santos Silva; Stephen W. Duffy; Douglas F. Easton; Diana Eccles; Dylan R. Edwards; Joanne Edwards; D. G. Evans; Deborah Fenlon; James M. Flanagan; Claire Foster

IntroductionBreast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.MethodsMore than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer ‘stem’ cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account.ResultsThe 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working.ConclusionsWith resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.


Molecular and Cellular Biology | 2008

The AIB1 Oncogene Promotes Breast Cancer Metastasis by Activation of PEA3-Mediated Matrix Metalloproteinase 2 (MMP2) and MMP9 Expression

Li Qin; Lan Liao; Aisling M Redmond; Leonie Young; Yuhui Yuan; Hongwu Chen; Bert W. O'Malley; Jianming Xu

ABSTRACT Amplified-in-breast cancer 1 (AIB1) is an overexpressed transcriptional coactivator in breast cancer. Although overproduced AIB1 is oncogenic, its role and underlying mechanisms in metastasis remain unclear. Here, mammary tumorigenesis and lung metastasis were investigated in wild-type (WT) and AIB1−/− mice harboring the mouse mammary tumor virus-polyomavirus middle T (PyMT) transgene. All WT/PyMT mice developed massive lung metastasis, but AIB1−/−/PyMT mice with comparable mammary tumors had significantly less lung metastasis. The recipient mice with transplanted AIB1−/−/PyMT tumors also had much less lung metastasis than the recipient mice with transplanted WT/PyMT tumors. WT/PyMT tumor cells expressed mesenchymal markers such as vimentin and N-cadherin, migrated and invaded rapidly, and formed disorganized cellular masses in three-dimensional cultures. In contrast, AIB1−/−/PyMT tumor cells maintained epithelial markers such as E-cadherin and ZO-1, migrated and invaded slowly, and still formed polarized acinar structures in three-dimensional cultures. Molecular analyses revealed that AIB1 served as a PEA3 coactivator and formed complexes with PEA3 on matrix metalloproteinase 2 (MMP2) and MMP9 promoters to enhance their expression in both mouse and human breast cancer cells. In 560 human breast tumors, AIB1 expression was found to be positively associated with PEA3, MMP2, and MMP9. These findings suggest a new alternative strategy for controlling the deleterious roles of these MMPs in breast cancer by inhibiting their upstream coregulator AIB1.


Journal of Clinical Pathology | 2004

Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1

Fergal J. Fleming; E. Myers; Gabrielle E. Kelly; Thomas Crotty; Enda W. McDermott; Niall O'Higgins; A. D. K. Hill; Leonie Young

Background: In human breast cancer, the growth factor receptor HER2 is associated with disease progression and resistance to endocrine treatment. Growth factor induced mitogen activated protein kinase activity can phosphorylate not only the oestrogen receptor, but also its coactivator proteins AIB1 and SRC-1. Aim: To determine whether insensitivity to endocrine treatment in HER2 positive patients is associated with enhanced expression of coactivator proteins, expression of the HER2 transcriptional regulator, PEA3, and coregulatory proteins, AIB1 and SRC-1, was assessed in a cohort of patients with breast cancer of known HER2 status. Methods: PEA3, AIB1, and SRC-1 protein expression in 70 primary breast tumours of known HER2 status (HER2 positive, n = 35) and six reduction mammoplasties was assessed using immunohistochemistry. Colocalisation of PEA3 with AIB1 and SRC-1 was determined using immunofluorescence. Expression of PEA3, AIB1, and SRC-1 was correlated with clinicopathological parameters. Results: In primary breast tumours expression of PEA3, AIB1, and SRC-1 was associated with HER2 status (p = 0.0486, p = 0.0444, and p = 0.0012, respectively). In the HER2 positive population, PEA3 expression was associated with SRC-1 (p = 0.0354), and both PEA3 and SRC-1 were significantly associated with recurrence on univariate analysis (p = 0.0345; p<0.0001). On multivariate analysis, SRC-1 was significantly associated with disease recurrence in HER2 positive patients (p = 0.0066). Conclusion: Patients with high expression of HER2 in combination with SRC-1 have a greater probability of recurrence on endocrine treatment compared with those who are HER2 positive but SRC-1 negative. SRC-1 may be an important predictive indicator and therapeutic target in breast cancer.


Clinical Cancer Research | 2005

Associations and Interactions between Ets-1 and Ets-2 and Coregulatory Proteins, SRC-1, AIB1, and NCoR in Breast Cancer

Eddie Myers; Arnold Dk Hill; Gabrielle E. Kelly; Enda W. McDermott; Niall O'Higgins; Yvonne Buggy; Leonie Young

Purpose: Associations between p160 coactivator proteins and the development of resistance to endocrine treatment have been described. We hypothesized that nuclear receptor coregulatory proteins may interact with nonsteroid receptors. We investigated the mitogen-activated protein kinase–activated transcription factors, Ets, as possible interaction proteins for the coactivators SRC-1 and AIB1 and the corepressor NCoR in human breast cancer. Experimental Design: Expression and coexpression of Ets and the coregulatory proteins was investigated using immunohistochemistry and immunofluorescence in a cohort of breast tumor patients (N = 134). Protein expression, protein-DNA interactions and protein-protein interactions were assessed using Western blot, electromobility shift, and coimmunoprecipitation analysis, respectively. Results: Ets-1 and Ets-2 associated with reduced disease-free survival (P < 0.0292, P < 0.0001, respectively), whereas NCoR was a positive prognostic indicator (P < 0.0297). Up-regulation of Ets-1 protein expression in cell cultures derived from patient tumors in the presence of growth factors associated with tumor grade (P < 0.0013; n = 28). In primary breast tumor cell cultures and in the SKBR3 breast cell line, growth factors induced interaction between Ets and their DNA response element, induced recruitment of coactivators to the transcription factor-DNA complex, and up-regulated protein expression of HER2. Ets-1 and Ets-2 interacted with the coregulators under basal conditions, and growth factors up-regulated Ets-2 interaction with SRC-1 and AIB1. Coexpression of Ets-2 and SRC-1 significantly associated with the rate of recurrence and HER expression, compared with patients who expressed Ets-2 but not SRC-1 (P < 0.0001 and P < 0.0001, respectively). Conclusions: These data describe associations and interactions between nonsteroid transcription factors and coregulatory proteins in human breast cancer.


British Journal of Cancer | 2004

Inverse relationship between ER-beta and SRC-1 predicts outcome in endocrine-resistant breast cancer.

Eddie Myers; Fergal J. Fleming; Thomas Crotty; Gabrielle E. Kelly; Enda W. McDermott; Niall O'Higgins; A. D. K. Hill; Leonie Young

The oestrogen receptor (ER) interacts with coactivator proteins to modulate genes central to breast tumour progression. Oestrogen receptor is encoded for by two genes, ER-α and ER-β. Although ER-α has been well characterized, the role of ER-β as a prognostic indicator remains unresolved. To determine isoform-specific expression of ER and coexpression with activator proteins, we examined the expression and localisation of ER-α, ER-β and the coactivator protein steroid receptor coactivator 1 (SRC-1) by immunohistochemistry and immunofluorescence in a cohort of human breast cancer patients (n=150). Relative levels of SRC-1 in primary breast cultures derived from patient tumours in the presence of β-oestradiol and tamoxifen was assessed using Western blotting (n=14). Oestrogen receptor-β protein expression was associated with disease-free survival (DFS) and inversely associated with the expression of HER2 (P=0.0008 and P<0.0001, respectively), whereas SRC-1 was negatively associated with DFS and positively correlated with HER2 (P<0.0001 and P<0.0001, respectively). Steroid receptor coactivator 1 protein expression was regulated in response to β-oestradiol or tamoxifen in 57% of the primary tumour cell cultures. Protein expression of ER-β and SRC-1 was inversely associated (P=0.0001). The association of ER-β protein expression with increased DFS and its inverse relationship with SRC-1 suggests a role for these proteins in predicting outcome in breast cancer.


Clinical Cancer Research | 2009

Coassociation of Estrogen Receptor and p160 Proteins Predicts Resistance to Endocrine Treatment; SRC-1 is an Independent Predictor of Breast Cancer Recurrence

Aisling M Redmond; Fiona Bane; Anthony T. Stafford; Marie McIlroy; Mary F. Dillon; Thomas Crotty; Arnold Dk Hill; Leonie Young

Purpose: This study investigates the role of the p160 coactivators AIB1 and SRC-1 independently, and their interactions with the estrogen receptor, in the development of resistance to endocrine treatments. Experimental Design: The expression of the p160s and the estrogen receptor, and their interactions, was analyzed by immunohistochemistry and quantitative coassociation immunofluorescent microscopy, using cell lines, primary breast tumor cell cultures, and a tissue microarray with breast cancer samples from 560 patients. Results: Coassociation of the p160s and estrogen receptor α was increased in the LY2 endocrine-resistant cell line following treatment with tamoxifen in comparison with endocrine-sensitive MCF-7 cells. In primary cultures, there was an increase in association of the coactivators with estrogen receptor α following estrogen treatment but dissociation was evident with tamoxifen. Immunohistochemical staining of the tissue microarray revealed that SRC-1 was a strong predictor of reduced disease-free survival (DFS), both in patients receiving adjuvant tamoxifen treatment and untreated patients (P < 0.0001 and P = 0.0111, respectively). SRC-1 was assigned a hazard ratio of 2.12 using a Cox proportional hazards model. Endocrine-treated patients who coexpressed AIB1 with human epidermal growth factor receptor 2 had a significantly shorter DFS compared with all other patients (P = 0.03). Quantitative coassociation analysis in the patient tissue microarray revealed significantly stronger colocalization of AIB1 and SRC-1 with estrogen receptor α in patients who have relapsed in comparison with those patients who did not recur (P = 0.026 and P = 0.00001, respectively). Conclusions: SRC-1 is a strong independent predictor of reduced DFS, whereas the interactions of the p160 proteins with estrogen receptor α can predict the response of patients to endocrine treatment.


Oncogene | 2008

Ets-2 and p160 proteins collaborate to regulate c-Myc in endocrine resistant breast cancer

Dhafir Al-Azawi; M Mc Ilroy; Gabrielle E. Kelly; Aisling M Redmond; Fiona Bane; Sinead Cocchiglia; A. D. K. Hill; Leonie Young

Associations between p160 coactivator proteins and endocrine resistance have been described. Though thought to primarily interact with steroid receptors, the p160 proteins can also interact with non-nuclear receptor transcription factors including the MAP kinase effector proteins Ets. Here, we observed that in breast cancer cells resistant and insensitive to endocrine treatment, the growth factor EGF induced Ets-2 but not Ets-1 transcriptional regulation of the oncogene myc. Ets-2 regulation of myc was found to be reliant on the p160 proteins SRC-1 and SRC-3. In support of these molecular observations, strong associations were observed between the transcription factor, Ets-2 and its coactivator SRC-1 (P<0.01) and the target gene myc (P<0.0001) in a cohort of breast cancer patients with locally advanced disease. Expression of Ets-2, SRC-1 and c-Myc individually all associated with reduced disease-free survival (P<0.001, P<0.001 and P=0.002 respectively). There was no association between SRC-3 and disease-free survival (P=0.707). SRC-1 can utilize MAP kinase effector transcription factor Ets-2 to regulate the production of the oncogene myc. These signalling mechanisms may be important in the development of steroid resistant/independent breast cancer.


Cancer Research | 2012

Metastatic Progression with Resistance to Aromatase Inhibitors Is Driven by the Steroid Receptor Coactivator SRC-1

Jean McBryan; Sarah M. Theissen; Christopher Byrne; E Hughes; Sinead Cocchiglia; Stephen Sande; Jane O'Hara; Paul Tibbitts; Arnold Dk Hill; Leonie Young

Aromatase inhibitors (AI) are a standard-of-care treatment for postmenopausal, estrogen receptor-positive breast cancers. Although tumor recurrence on AI therapy occurs, the mechanisms underlying acquired resistance to AIs remain unknown. In this study, we examined a cohort of endocrine-treated breast cancer patients and used a cell line model of resistance to the AI letrozole. In patients treated with a first-line AI, hormone receptor switching between primary and resistant tumors was a common feature of disease recurrence. Resistant cells exhibited a switch from steroid-responsive growth to growth factor-responsive and endocrine-independent growth, which was accompanied by the development of a more migratory and disorganized phenotype. Both the resistant cells and tumors from AI-resistant patients showed high expression of the steroid receptor coactivator SRC-1. Direct interactions between SRC-1 and the transcription factor Ets2 regulated Myc and MMP9. SRC-1 was required for the aggressive and motile phenotype of AI-resistant cells. Interestingly, SRC-1 expression in primary and/or recurrent tumors was associated with a reduction in disease-free survival in treated patients. Moreover, there was a significant association between SRC-1 and Ets2 in the recurrent tissue compared with the matched primary tumor. Together, our findings elucidate a mechanism of AI-specific metastatic progression in which interactions between SRC-1 and Ets2 promote dedifferentiation and migration in hormone-dependent breast cancer.


Molecular and Cellular Biology | 2006

The LIM Domain Protein LPP Is a Coactivator for the ETS Domain Transcription Factor PEA3

Baoqiang Guo; Rosemary E. Sallis; Amanda Greenall; Marleen M.R. Petit; Erik Jansen; Leonie Young; Wim J.M. Van de Ven; Andrew D. Sharrocks

ABSTRACT PEA3 is a member of a subfamily of ETS domain transcription factors which is regulated by a number of signaling cascades, including the mitogen-activated protein (MAP) kinase pathways. PEA3 activates gene expression and is thought to play an important role in promoting tumor metastasis and also in neuronal development. Here, we have identified the LIM domain protein LPP as a novel coregulatory binding partner for PEA3. LPP has intrinsic transactivation capacity, forms a complex with PEA3, and is found associated with PEA3-regulated promoters. By manipulating LPP levels, we show that it acts to upregulate the transactivation capacity of PEA3. LPP can also functionally interact in a similar manner with the related family member ER81. Thus, we have uncovered a novel nuclear function for the LIM domain protein LPP as a transcriptional coactivator. As LPP continually shuttles between the cell periphery and the nucleus, it represents a potential novel link between cell surface events and changes in gene expression.


Science Translational Medicine | 2014

Epigenetic reprogramming of HOXC10 in endocrine-resistant breast cancer.

Thushangi N. Pathiraja; Shweta Nayak; Yuanxin Xi; Shiming Jiang; Jason P. Garee; Dean P. Edwards; Adrian V. Lee; Jian Chen; Martin Shea; Richard J. Santen; Frank Gannon; Sara Kangaspeska; Jaroslav Jelinek; Jean-Pierre Issa; Jennifer K. Richer; Anthony Elias; Marie McIlroy; Leonie Young; Nancy E. Davidson; Rachel Schiff; Wei Li; Steffi Oesterreich

Genome-wide screen identifies methylation of the estrogen-repressed HOXC10 gene as a determinant of resistance to aromatase inhibitors in breast cancer. Playing Tug-of-War with HOXC10 Aromatase inhibitors are drugs that prevent androgens from being converted into estrogen, and they are frequently used to treat breast cancers that express the estrogen receptor. Unfortunately, some patients’ tumors never respond to these drugs, and others gradually become resistant over time. Although the development of resistance to aromatase inhibitors has been investigated in some previous studies and some potential mechanisms have been proposed, much about this process remains unknown. Pathiraja and colleagues began by performing a genome-wide methylation screen in breast cancer cells, which identified the developmental gene HOXC10 as a target of epigenetic silencing in the context of long-term estrogen withdrawal. When HOXC10 is active, it interferes with proliferation and can stimulate apoptosis, but estrogen suppresses its activity, thereby promoting tumor growth. By decreasing estrogen production, aromatase inhibitors up-regulate HOXC10, accounting for some of their antitumor activity. However, long-term estrogen deprivation eventually has the opposite effect, leading to methylation of HOXC10 and its long-term suppression even in the absence of estrogen. These findings suggest that a rational approach for overcoming aromatase resistance in breast cancer may involve the addition of demethylating drugs to overcome the methylation of HOXC10 and take advantage of its antitumor effects, although this remains to be demonstrated directly. Resistance to aromatase inhibitors (AIs) is a major clinical problem in the treatment of estrogen receptor (ER)–positive breast cancer. In two breast cancer cell line models of AI resistance, we identified widespread DNA hyper- and hypomethylation, with enrichment for promoter hypermethylation of developmental genes. For the homeobox gene HOXC10, methylation occurred in a CpG shore, which overlapped with a functional ER binding site, causing repression of HOXC10 expression. Although short-term blockade of ER signaling caused relief of HOXC10 repression in both cell lines and breast tumors, it also resulted in concurrent recruitment of EZH2 and increased H3K27me3, ultimately transitioning to increased DNA methylation and silencing of HOXC10. Reduced HOXC10 in vitro and in xenografts resulted in decreased apoptosis and caused antiestrogen resistance. Supporting this, we used paired primary and metastatic breast cancer specimens to show that HOXC10 was reduced in tumors that recurred during AI treatment. We propose a model in which estrogen represses apoptotic and growth-inhibitory genes such as HOXC10, contributing to tumor survival, whereas AIs induce these genes to cause apoptosis and therapeutic benefit, but long-term AI treatment results in permanent repression of these genes via methylation and confers resistance. Therapies aimed at inhibiting AI-induced histone and DNA methylation may be beneficial in blocking or delaying AI resistance.

Collaboration


Dive into the Leonie Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie McIlroy

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Damir Vareslija

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

A. D. K. Hill

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Damian McCartan

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Fiona Bane

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Adk Hill

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Ailis Fagan

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

N. O’Higgins

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Christopher Byrne

Royal College of Surgeons in Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge