Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie McIlroy is active.

Publication


Featured researches published by Marie McIlroy.


Clinical Cancer Research | 2009

Coassociation of Estrogen Receptor and p160 Proteins Predicts Resistance to Endocrine Treatment; SRC-1 is an Independent Predictor of Breast Cancer Recurrence

Aisling M Redmond; Fiona Bane; Anthony T. Stafford; Marie McIlroy; Mary F. Dillon; Thomas Crotty; Arnold Dk Hill; Leonie Young

Purpose: This study investigates the role of the p160 coactivators AIB1 and SRC-1 independently, and their interactions with the estrogen receptor, in the development of resistance to endocrine treatments. Experimental Design: The expression of the p160s and the estrogen receptor, and their interactions, was analyzed by immunohistochemistry and quantitative coassociation immunofluorescent microscopy, using cell lines, primary breast tumor cell cultures, and a tissue microarray with breast cancer samples from 560 patients. Results: Coassociation of the p160s and estrogen receptor α was increased in the LY2 endocrine-resistant cell line following treatment with tamoxifen in comparison with endocrine-sensitive MCF-7 cells. In primary cultures, there was an increase in association of the coactivators with estrogen receptor α following estrogen treatment but dissociation was evident with tamoxifen. Immunohistochemical staining of the tissue microarray revealed that SRC-1 was a strong predictor of reduced disease-free survival (DFS), both in patients receiving adjuvant tamoxifen treatment and untreated patients (P < 0.0001 and P = 0.0111, respectively). SRC-1 was assigned a hazard ratio of 2.12 using a Cox proportional hazards model. Endocrine-treated patients who coexpressed AIB1 with human epidermal growth factor receptor 2 had a significantly shorter DFS compared with all other patients (P = 0.03). Quantitative coassociation analysis in the patient tissue microarray revealed significantly stronger colocalization of AIB1 and SRC-1 with estrogen receptor α in patients who have relapsed in comparison with those patients who did not recur (P = 0.026 and P = 0.00001, respectively). Conclusions: SRC-1 is a strong independent predictor of reduced DFS, whereas the interactions of the p160 proteins with estrogen receptor α can predict the response of patients to endocrine treatment.


Science Translational Medicine | 2014

Epigenetic reprogramming of HOXC10 in endocrine-resistant breast cancer.

Thushangi N. Pathiraja; Shweta Nayak; Yuanxin Xi; Shiming Jiang; Jason P. Garee; Dean P. Edwards; Adrian V. Lee; Jian Chen; Martin Shea; Richard J. Santen; Frank Gannon; Sara Kangaspeska; Jaroslav Jelinek; Jean-Pierre Issa; Jennifer K. Richer; Anthony Elias; Marie McIlroy; Leonie Young; Nancy E. Davidson; Rachel Schiff; Wei Li; Steffi Oesterreich

Genome-wide screen identifies methylation of the estrogen-repressed HOXC10 gene as a determinant of resistance to aromatase inhibitors in breast cancer. Playing Tug-of-War with HOXC10 Aromatase inhibitors are drugs that prevent androgens from being converted into estrogen, and they are frequently used to treat breast cancers that express the estrogen receptor. Unfortunately, some patients’ tumors never respond to these drugs, and others gradually become resistant over time. Although the development of resistance to aromatase inhibitors has been investigated in some previous studies and some potential mechanisms have been proposed, much about this process remains unknown. Pathiraja and colleagues began by performing a genome-wide methylation screen in breast cancer cells, which identified the developmental gene HOXC10 as a target of epigenetic silencing in the context of long-term estrogen withdrawal. When HOXC10 is active, it interferes with proliferation and can stimulate apoptosis, but estrogen suppresses its activity, thereby promoting tumor growth. By decreasing estrogen production, aromatase inhibitors up-regulate HOXC10, accounting for some of their antitumor activity. However, long-term estrogen deprivation eventually has the opposite effect, leading to methylation of HOXC10 and its long-term suppression even in the absence of estrogen. These findings suggest that a rational approach for overcoming aromatase resistance in breast cancer may involve the addition of demethylating drugs to overcome the methylation of HOXC10 and take advantage of its antitumor effects, although this remains to be demonstrated directly. Resistance to aromatase inhibitors (AIs) is a major clinical problem in the treatment of estrogen receptor (ER)–positive breast cancer. In two breast cancer cell line models of AI resistance, we identified widespread DNA hyper- and hypomethylation, with enrichment for promoter hypermethylation of developmental genes. For the homeobox gene HOXC10, methylation occurred in a CpG shore, which overlapped with a functional ER binding site, causing repression of HOXC10 expression. Although short-term blockade of ER signaling caused relief of HOXC10 repression in both cell lines and breast tumors, it also resulted in concurrent recruitment of EZH2 and increased H3K27me3, ultimately transitioning to increased DNA methylation and silencing of HOXC10. Reduced HOXC10 in vitro and in xenografts resulted in decreased apoptosis and caused antiestrogen resistance. Supporting this, we used paired primary and metastatic breast cancer specimens to show that HOXC10 was reduced in tumors that recurred during AI treatment. We propose a model in which estrogen represses apoptotic and growth-inhibitory genes such as HOXC10, contributing to tumor survival, whereas AIs induce these genes to cause apoptosis and therapeutic benefit, but long-term AI treatment results in permanent repression of these genes via methylation and confers resistance. Therapies aimed at inhibiting AI-induced histone and DNA methylation may be beneficial in blocking or delaying AI resistance.


Cancer Research | 2010

Interaction of Developmental Transcription Factor HOX11 with Steroid Receptor Coactivator SRC-1 Mediates Resistance to Endocrine Therapy in Breast Cancer

Marie McIlroy; Damian McCartan; Sarah Early; Peadar Ó Gaora; Stephen R. Pennington; Arnold Dk Hill; Leonie Young

Mechanisms of acquired resistance to endocrine therapy in breast cancer, a major clinical challenge, are poorly understood. We have used a mass spectrometry-based screen to identify proteins that are associated with the endocrine-resistant phenotype. In this study, we report the identification of a novel pathway of resistance to endocrine therapy involving interactions of the developmental transcription HOXC11 with the steroid receptor coactivator protein SRC-1, which is a strong predictor of reduced disease-free survival in breast cancer patients. HOXC11 and SRC-1 cooperate to regulate expression of the calcium-binding protein S100beta in resistant breast cancer cells. Nuclear HOXC11 and S100beta were found to strongly predict poor disease-free survival in breast cancer patients (n = 560; hazard ratios: 5.79 and 5.82, respectively; P < 0.0001). Elevated serum levels of S100beta detected in patients also predicted reduced disease-free survival (n = 80; hazard ratio: 5.3; P = 0.004). Our findings define a biomolecular interaction network that drives an adaptive response to endocrine therapy with negative consequences for survival in breast cancer.


Cancer Research | 2012

Global characterization of the SRC-1 transcriptome identifies ADAM22 as an ER-independent mediator of endocrine resistant breast cancer

Damian McCartan; Jarlath C. Bolger; Ailis Fagan; Christopher Byrne; Yuan Hao; Li Qin; Marie McIlroy; Jianming Xu; Arnold Dk Hill; Peadar Ó Gaora; Leonie Young

The development of breast cancer resistance to endocrine therapy results from an increase in cellular plasticity that permits the emergence of a hormone-independent tumor. The steroid coactivator protein SRC-1, through interactions with developmental proteins and other nonsteroidal transcription factors, drives this tumor adaptability. In this discovery study, we identified ADAM22, a non-protease member of the ADAM family of disintegrins, as a direct estrogen receptor (ER)-independent target of SRC-1. We confirmed SRC-1 as a regulator of ADAM22 by molecular, cellular, and in vivo studies. ADAM22 functioned in cellular migration and differentiation, and its levels were increased in endocrine resistant-tumors compared with endocrine-sensitive tumors in mouse xenograft models of human breast cancer. Clinically, ADAM22 was found to serve as an independent predictor of poor disease-free survival. Taken together, our findings suggest that SRC-1 switches steroid-responsive tumors to a steroid-resistant state in which the SRC-1 target gene ADAM22 has a critical role, suggesting this molecule as a prognostic and therapeutic drug target that could help improve the treatment of endocrine-resistant breast cancer.


Clinical Cancer Research | 2012

AIB1:ERα Transcriptional Activity Is Selectively Enhanced in Aromatase Inhibitor–Resistant Breast Cancer Cells

Jane O'Hara; Damir Vareslija; Jean McBryan; Fiona Bane; Paul Tibbitts; Christopher Byrne; Ronan Conroy; Yuan Hao; Peadar Ó Gaora; Arnold Dk Hill; Marie McIlroy; Leonie Young

Purpose: The use of aromatase inhibitors (AI) in the treatment of estrogen receptor (ER)-positive, postmenopausal breast cancer has proven efficacy. However, inappropriate activation of ER target genes has been implicated in the development of resistant tumors. The ER coactivator protein AIB1 has previously been associated with initiation of breast cancer and resistance to endocrine therapy. Experimental Design: Here, we investigated the role of AIB1 in the deregulation of ER target genes occurring as a consequence of AI resistance using tissue microarrays of patients with breast cancer and cell line models of resistance to the AI letrozole. Results: Expression of AIB1 associated with disease recurrence (P = 0.025) and reduced disease-free survival time (P = 0.0471) in patients treated with an AI as first-line therapy. In a cell line model of resistance to letrozole (LetR), we found ERα/AIB1 promoter recruitment and subsequent expression of the classic ER target genes pS2 and Myc to be constitutively upregulated in the presence of both androstenedione and letrozole. In contrast, the recruitment of the ERα/AIB1 transcriptional complex to the nonclassic ER target cyclin D1 and its subsequent expression remained sensitive to steroid treatment and could be inhibited by treatment with letrozole. Molecular studies revealed that this may be due in part to direct steroid regulation of c-jun-NH2-kinase (JNK), signaling to Jun and Fos at the cyclin D1 promoter. Conclusion: This study establishes a role for AIB1 in AI-resistant breast cancer and describes a new mechanism of ERα/AIB1 gene regulation which could contribute to the development of an aggressive tumor phenotype. Clin Cancer Res; 18(12); 3305–15. ©2012 AACR.


Endocrine-related Cancer | 2008

Cyclooxygenase-2 predicts adverse effects of tamoxifen: a possible mechanism of role for nuclear HER2 in breast cancer patients

Mary F. Dillon; Anthony T. Stafford; Gabrielle E. Kelly; Aisling M Redmond; Marie McIlroy; Thomas Crotty; Enda W. McDermott; Arnold Dk Hill; Leonie Young

Cyclooxygenase-2 (COX-2) is associated with breast tumour progression. Clinical and molecular studies implicate human epidermal growth factor receptor 2 (HER2) in the regulation of COX-2 expression. Recent reports raise the possibility that HER2 could mediate these effects through direct transcriptional mechanisms. The relationship between HER2 and COX-2 was investigated in a cohort of breast cancer patients with or without endocrine treatment. A tissue microarray comprising tumours from 560 patients with 10-year follow-up was analysed for HER2, ERK1/2, polyoma enhancer activator 3 (PEA3) and COX-2 expression. Subcellular localisation of HER2 was assessed by immunofluorescence and confocal microscopy. Expression of markers examined was analysed in relation to classic clinicopathological parameters and disease-free survival in the presence and absence of tamoxifen. COX-2 expression associated with both membranous and nuclear expression of HER2 (P=0.0033 and P<0.00001 respectively). No association was detected between COX-2 and either ERK1/2 or PEA3 (P=0.7 and P=0.3 respectively). None of the markers were found to be independently prognostic. Membrane HER2, nuclear HER2 and COX-2, however, were all found to predict poor disease-free survival in patients on endocrine treatment (P=0.0017, P=0.0003 and P=0.0202 respectively). Moreover, patients who were positive for COX-2 predicted adverse effects of tamoxifen (P=0.0427). These clinical ex vivo data are consistent with molecular observations that HER2 can regulate COX-2 expression through direct transcriptional mechanisms. COX-2 expression correlates with disease progression on endocrine treatment. This study supports a role for COX-2 as a predictor of adverse effects of tamoxifen in breast cancer patients.


Endocrine-related Cancer | 2010

The role of oestrogen receptor α in human thyroid cancer: contributions from coregulatory proteins and the tyrosine kinase receptor HER2

Dara O. Kavanagh; Marie McIlroy; Eddie Myers; Fiona Bane; Thomas Crotty; E. W. McDermott; Arnold Dk Hill; Leonie Young

Epidemiological, clinical, and molecular studies suggest a role for oestrogen in thyroid cancer. How oestrogen mediates its effects and the consequence of it on clinical outcome has not been fully elucidated. The participation of coregulatory proteins in modulating oestrogen receptor (ER) function and input of crosstalk with the tyrosine kinase receptor HER2 was investigated. Oestrogen induced cell proliferation in the follicular thyroid cancer (FTC)-133 cells, but not in the anaplastic 8305C cell line. Knockdown of the coactivator steroid receptor coactivator (SRC)-1 inhibited FTC-133 basal, but not oestrogen induced, cell proliferation. Oestrogen also increased protein expression of SRC-1 and the ER target gene cyclin D1 in the FTC-133 cell line. ERalpha, ERbeta, the coregulatory proteins SRC-1 and nuclear corepressor (NCoR), and the tyrosine kinase receptor HER2 were localised by immunohistochemistry and immnofluorescence in paraffin-embedded tissue from thyroid tumour patients (n=111). ERalpha was colocalised with both SRC-1 and NCoR to the nuclei of the tumour epithelial cells. Expression of ERalpha and NCoR was found predominantly in non-anaplastic tumours and was significantly associated with well-differentiated tumours and reduced incidence of disease recurrence. In non-anaplastic tumours, HER2 was significantly associated with SRC-1, and these proteins were associated with poorly differentiated tumours, capsular invasion and disease recurrence. Totally, 87% of anaplastic tumours were positive for SRC-1. Kaplan-Meier estimates of disease-free survival indicated that in thyroid cancer, SRC-1 strongly correlates with reduced disease-free survival (P<0.001), whereas NCoR predicted increased survival (P<0.001). These data suggest opposing roles for the coregulators SRC-1 and NCoR in thyroid tumour progression.


Cancer Research | 2014

Global Gene Repression by the Steroid Receptor Coactivator SRC-1 Promotes Oncogenesis

Ca Walsh; Jarlath C. Bolger; Christopher Byrne; Sinead Cocchiglia; Yuan Hao; Ailis Fagan; Li Qin; Aoife Cahalin; Damian McCartan; Marie McIlroy; Peadar O'Gaora; Jianming Xu; Arnold Dk Hill; Leonie Young

Transcriptional control is the major determinant of cell fate. The steroid receptor coactivator (SRC)-1 enhances the activity of the estrogen receptor in breast cancer cells, where it confers cell survival benefits. Here, we report that a global analysis of SRC-1 target genes suggested that SRC-1 also mediates transcriptional repression in breast cancer cells. Combined SRC-1 and HOXC11 ChIPseq analysis identified the differentiation marker, CD24, and the apoptotic protein, PAWR, as direct SRC-1/HOXC11 suppression targets. Reduced expression of both CD24 and PAWR was associated with disease progression in patients with breast cancer, and their expression was suppressed in metastatic tissues. Investigations in endocrine-resistant breast cancer cell lines and SRC-1(-/-)/PyMT mice confirmed a role for SRC-1 and HOXC11 in downregulation of CD24 and PAWR. Through bioinformatic analysis and liquid chromatography/mass spectrometry, we identified AP1 proteins and Jumonji domain containing 2C (JMD2C/KDM4C), respectively, as members of the SRC-1 interactome responsible for transcriptional repression. Our findings deepen the understanding of how SRC-1 controls transcription in breast cancers.


FEBS Letters | 2011

RuvBl2 cooperates with Ets2 to transcriptionally regulate hTERT in colon cancer

Padraic Flavin; Aisling M Redmond; Jean McBryan; Sinead Cocchiglia; Paul Tibbitts; Patrick Fahy-Browne; Elaine Kay; Achim Treumann; Kilian Perrem; Marie McIlroy; Arnold Dk Hill; Leonie Young

Human cancers utilise telomerase to maintain telomeres and prohibit cell senescence. Human telomerase reverse transcriptase (hTERT), an essential component of this complex, is regulated at the level of gene transcription. Using SILAC‐proteomic analysis and molecular studies, we identified the AAA+ ATPase, RuvBl2 as a transcriptional regulator of hTERT and established that this regulation is through cooperation with Ets‐2. In colon cancer patients, nuclear expression of RuvBl2 associated with nuclear expression of hTERT, pEts2 and advanced nodal disease (P < 0.01, P = 0.05 and P = 0.03 respectively, n = 170). These data firmly implicate RuvBl2 in Ets2 mediated regulation of hTERT in colon cancer which has functional and clinical consequences.


British Journal of Cancer | 2011

HOXC11-SRC-1 regulation of S100beta in cutaneous melanoma: new targets for the kinase inhibitor dasatinib.

C deBlacam; Christopher Byrne; E Hughes; Marie McIlroy; Fiona Bane; A. D. K. Hill; Leonie Young

Background:Cutaneous melanoma is an aggressive disease. S100beta is an established biomarker of disease progression; however, the mechanism of its regulation in melanoma is undefined.Methods:Expression of HOXC11 and SRC-1 was examined by immunohistochemistry and immunofluorescence. Molecular and cellular techniques were used to investigate regulation of S100beta, including, western blot, qPCR, ChIP and migration assays.Results:Expression levels of the transcription factor HOXC11 and its coactivator SRC-1 were significantly elevated in malignant melanoma in comparison with benign nevi (P<0.001 and P=0.017, respectively, n=80), and expression of HOXC11 and SRC-1 in the malignant tissue associated with each other (P<0.001). HOXC11 recruitment to the promoter of S100beta was observed in the primary melanoma cell line SKMel28. S100beta expression was found to be dependant on both HOXC11 and SRC-1. Treatment with the Src/Abl inhibitor, dasatinib, reduced HOXC11–SRC-1 interaction and prevented recruitment of HOXC11 to the S100beta promoter. Dasatinib inhibited both mRNA and protein levels of S100beta and reduced migration of the metastatic cell line MeWo.Conclusion:We have defined a signalling mechanism regulating S100beta in melanoma, which can be modulated by dasatinib. Profiling patients for expression of key markers of this network has the potential to increase the efficacy of dasatinib treatment.

Collaboration


Dive into the Marie McIlroy's collaboration.

Top Co-Authors

Avatar

Leonie Young

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damian McCartan

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Fiona Bane

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Christopher Byrne

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Ailis Fagan

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Aisling M Redmond

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Jarlath C. Bolger

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Jean McBryan

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Paul Tibbitts

Royal College of Surgeons in Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge