Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leslie F. Ruppert is active.

Publication


Featured researches published by Leslie F. Ruppert.


International Journal of Coal Geology | 1999

Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky

James C. Hower; Leslie F. Ruppert; Cortland F. Eble

Abstract The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, β-quartz, anatase and euhedral zircon, that constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570–1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870–4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y+∑REE): total Y+∑REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y+∑REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.


International Journal of Coal Geology | 2002

Controls on boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky coalfield, USA

James C. Hower; Leslie F. Ruppert; David A. Williams

Abstract The Duckmantian-aged Amos coal bed is a thin ( Geochemical analysis of the Amos coal bed shows higher concentrations of B and Ge than other Western Kentucky coal beds. High total B concentrations as well as high B/Be, both considered to be indicators of marine environments, increase toward the top of the coal bed. Most of the B values for the Amos samples range from 66 to 103 ppm (whole coal basis) indicating deposition in a brackish environment. High Ge concentrations in coals have been considered to be a function of seam thickness and proximity to the top and bottom of the coal bed. Thin coals, such as the Amos, are dominated by the coal bed margins and, therefore, have a tendency to have relatively high Ge concentrations. In the case of the Amos coal bed, the lower bench has a higher Ge content, suggesting that the substrate was a more important source of Ge than the roof rock.


Applied Geochemistry | 1997

Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal field

James C. Hower; J. David Robertson; Amy S. Wong; Cortland F. Eble; Leslie F. Ruppert

Abstract The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazardous elements in the Fire Clay and Pond Creek coal beds, with particular emphasis on As and Pb, 2 elements that are included in the 1990 Clean Air Act Amendments as potential air toxics. The 2 coals are discussed individually as the depositional histories are distinct, the Fire Clay coal bed having more sites where relatively high-S lithologies are encountered. In an effort to characterize these coals, 40 whole channel samples, excluding 1-cm partings, were analyzed for major, minor and trace elements by X-ray fluorescence and proton-induced X-ray emission spectroscopy. Previously analyzed samples were added to provide additional geographic coverage and lithotype samples from one site were analyzed in order to provide detail of vertical elemental trends. The As and Pb levels in the Fire Clay coal bed tend to be higher than in the Pond Creek coal bed. One whole channel sample of the Fire Clay coal bed contains 1156 ppm As (ash basis), with a single lithotype containing 4000 ppm As (ash basis). Most of the As and Pb appears to be associated with pyrite, which potentially can be removed in beneficiation (particularly coarser pyrite). Disseminated finer pyrite may not be completely removable by cleaning. In the examination of pyrite conducted in this study, it does not appear that significant concentration of As or Pb occurs in the finer pyrite forms. The biggest potential problem of As- or Pb-enriched pyrite is, therefore, one of refuse disposal.


International Journal of Coal Geology | 1996

Origin and significance of high nickel and chromium concentrations in Pliocene lignite of the Kosovo Basin, Serbia

Leslie F. Ruppert; Robert B. Finkelman; Emilija Boti; Milan Milosavljevic; Susan J. Tewalt; Nancy S. Simon; Frank T. Dulong

Abstract Trace element data from 59 Pliocene lignite cores from the lignite field in the Kosovo Basin, southern Serbia, show localized enrichment of Ni and Cr (33–304 ppm and 8–176 ppm, respectively, whole-coal basis). Concentrations of both elements decrease from the western and southern boundaries of the lignite field. Low-temperature ash and polished coal pellets of selected bench and whole-coal samples were analyzed by X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray analyses. These analyses show that most of the Ni and Cr are incorporated in detrital and, to a lesser degree, in authigenic minerals. The Ni- and Cr-bearing detrital minerals include oxides, chromites, serpentine-group minerals and rare mixed-layer clays. Possible authigenic minerals include NiFe sulfates and sulfides. Analyses of three lignite samples by a supercritical fluid extraction technique indicate that some (1–11%) of the Ni is organically bound. Ni- and Cr-bearing oxides, mixed-layer clays, chromites and serpentine-group minerals were also identified in weathered and fresh samples of laterite developed on serpentinized Paleozoic peridotite at the nearby Glavica and Cikatovo Ni mines. These mines are located along the western and northwestern rim, respectively, of the Kosovo Basin, where Ni contents are highest. The detrital Ni- and Cr-bearing minerals identified in lignite samples from the western part of the Kosovo Basin may have been transported into the paleoswamp by rivers that drained the two Paleocene laterites. Some Ni may have been transported directly into the paleoswamp in solution or, alternatively, Ni may have been leached from detrital minerals by acidic peat water and adsorbed onto organic matter and included into authigenic mineral phases. No minable source of Ni and Cr is known in the southern part of the lignite field; however, the mineral and chemical data from the lignite and associated rocks suggest that such a source area may exist.


International Journal of Coal Geology | 2002

The US Geological Survey's national coal resource assessment: The results

Leslie F. Ruppert; Mark A. Kirschbaum; Peter D. Warwick; Romeo M. Flores; Ronald H. Affolter; Joseph R. Hatch

Abstract The US Geological Survey and the State geological surveys of many coal-bearing States recently completed a new assessment of the top producing coal beds and coal zones in five major producing coal regions—the Appalachian Basin, Gulf Coast, Illinois Basin, Colorado Plateau, and Northern Rocky Mountains and Great Plains. The assessments, which focused on both coal quality and quantity, utilized geographic information system technology and large databases. Over 1,600,000 million short tons of coal remain in over 60 coal beds and coal zones that were assessed. Given current economic, environmental, and technological restrictions, the majority of US coal production will occur in that portion of the assessed coal resource that is lowest in sulfur content. These resources are concentrated in parts of the central Appalachian Basin, Colorado Plateau, and the Northern Rocky Mountains.


Organic Geochemistry | 1993

Factors affecting the geochemistry of a thick, subbituminous coal bed in the Powder River Basin: volcanic, detrital, and peat-forming processes

Sharon S. Crowley; Leslie F. Ruppert; Harvey E. Belkin; Ronald W. Stanton; Tim A. Moore

Abstract The inorganic geochemistry and mineralogy of three cores from the Anderson-Dietz 1 coal bed, a 15.2-m-thick subbituminous coal bed in the Tongue River Member (Paleocene) of the Fort Union Formation, were examined (1) to determine if the cores could be correlated by geochemical composition alone over a total distance of 2 km and (2) to identify the major factors that influenced the geochemistry of the coal bed. Chemical data (46 elements on a coal-ash basis) for 81 coal samples and 4 carbonaceous rock samples, with most samples representing a 0.6-m-thick (2-ft) interval of core, were grouped into compositional clusters by means of cluster analysis. Seven major clusters were produced; two of these clusters can be used to correlate the coal bed throughout the study area. Data from scanning electron and optical microscope analyses indicate that several factors influenced the geochemistry of the Anderson-Dietz 1 coal bed. The majority of mineral grains in the coal bed are interpreted to be detrital (water borne); evidence includes the presence of rounded to subrounded quartz grains having two-phase, aqueous fluid inclusions characteristic of hydrothermal or low-to-moderate grade metamorphic quartz. These quartz grains are found throughout the coal bed but are most abundant in samples from the midpart of the bed, which was influenced by detrital input associated with the deposition of the clastic rocks that form the split between the Anderson and Dietz 1 coal beds 900 m to the east of the study area. In addition to the detrital minerals mentioned above, volcanic ash that was fluvially transported to the sites of peat deposition or possibly deposited as air-fall volcanic ash also affected the geochemistry of the coal bed. For example, crandallite(?), a mineral reported to form as an alteration product of volcanic ash, is found in seven samples from the coal bed. The presence of quartz grains containing silicate-melt inclusions in eight samples from the coal bed.provides further support for a volcanic ash component. Other factors that probably affected the geochemistry of the coal bed include (1) detrital input associated with the deposition of the roof rocks of the coal bed, (2) peat-forming processes and plant material, and (3) epigenetic ground-water flow.


International Journal of Coal Geology | 1991

Effects of detrital influx in the Pennsylvanian Upper Freeport peat swamp

Leslie F. Ruppert; Ronald W. Stanton; C. Blaine Cecil; Cortland F. Eble; Frank T. Dulong

Abstract Quartz cathodoluminescence properties and mineralogy of three sets of samples and vegetal and/ or miospore data from two sets of samples from the Upper Freeport coal bed, west-central Pennsylvania, show that detrital influence from a penecontemporaneous channel is limited to an area less than three km from the channel. The sets of samples examined include localities of the coal bed where (1) the coal is thin, split by partings, and near a penecontemporaneous fluvial channel, (2) the coal is relatively thick and located approximately three km from the channel, and (3) the coal is thick and located approximately 12 km from the channel. Samples from locality 1 (nearest the channel) have relatively high-ash yields (low-temperature ash average = 27.3% on a pyrite- and calcite-free basis) and high proportions of quartz and clay minerals. The quartz is primarily detrital, as determined by cathodoluminescent properties, and the ratio of kaolinite to illite is low. In addition, most of the plant remains and miospores indicate peat-forming plants that required low nutrient levels for growth. In contrast, samples from localities 2 and 3, from the more interior parts of the bed, contained predominantly authigenic quartz grains nd yielded low-temperature ash values of less than 14% on a pyrite- and calcite-free basis. The low-temperature ash contains low concentrations of quartz and clay minerals and the ratio of kaolinite to illite is relatively high. Although intact core was not available for paleobotanical analyses, another core collected within 1 km from locality 3 contained plant types interpreted to have required high nutrient levels for growth. These data indicate that mineral formation is dominated by authigenic processes in interior parts of the coal body. Some of the authigenic quartz may have been derived from herbaceous ferns as indicated by patterns in the palynological and paleobotanical data. In contrast, detrital processes appeared to be limited to in areas directly adjacent to the penecontemporaneous channel where the coal bed is high in ash, split by mineral-rich partings, and of little or no economic value.


Organic Geochemistry | 1993

Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia

Leslie F. Ruppert; Tim A. Moore

Abstract The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ( 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and A1 phosphates, quartz that luminescences in the blue color range, and euhedral to subhedral pyroxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in teh orange color range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers.


Organic Geochemistry | 1991

Volcanic ash dispersed in the Wyodak-Anderson coal bed, Powder River Basin, Wyoming

Don M. Triplehorn; Ronald W. Stanton; Leslie F. Ruppert; Sharon S. Crowley

Minerals derived from air-fall volcanic ash were found in two zones in the upper Paleocene Wyodak-Anderson coal bed of the Fort Union Formation in the Powder River Basin of Wyoming, and are the first reported evidence of such volcanic material in this thick (> 20 m) coal bed. The volcanic minerals occur in zones that are not visually obvious because they contain little or no clay. These zones were located by geophysical logs of the boreholes and X-ray radiography of the cores. The zones correspond to two of a series of incremental core samples of the coal bed that have anomalous concentrations of Zr, Ba, Nb, Sr, and P2O5. Two suites of minerals were found in both of the high-density zones. A primary suite (not authigenic) consists of silt-sized quartz grains, biotite, and minor zircon. A minor suite consists of authigenic minerals, including calcite, pyrite, kaolinite, quartz, anatase, barite, and an alumino-phosphate (crandallite?). The original volcanic ash is inferred to have consisted of silica glass containing phenocrysts of quartz, biotite, zircon, and possibly, associated feldspars, pyroxenes, and amphiboles. The glass, as well as the less stable minerals, probably dissolved relatively quickly and contributed to the minor authigenic mineral suite or was removed from the peat as a result of the prevailing hydrologic conditions present in a raised peat formation. This type of volcanic ash suggests that suggests that volcanic material could have rained on the peat; this fallout may have also had a fertilizing effect on the peat by providing nutrients essential for plant growth thus contributing to the thick accumulations of the Wyodak-Anderson bed. Notwithstanding, the presence of these minerals provides evidence for the contribution by volcanic sources to the mineral content of coal, but not as tonsteins.


Journal of Sedimentary Research | 1985

Authigenic Quartz in the Upper Freeport Coal Bed, West-Central Pennsylvania

Leslie F. Ruppert; C. Blaine Cecil; Ronald W. Stanton; Ralph P. Christian

Cathodoluminescence petrography was used to examine quartz grains contained in facies of the Upper Freeport coal bed (Middle Pennsylvanian) of west-central Pennsylvania. Samples included ash concentrates, polished blocks of different lithotypes, and standard petrographic pellets of specific gravity separates of facies channel samples. More than 80% of the quartz in mineral and vitrain-rich bands in the polished blocks of the Upper Freeport coal bed do not exhibit cathodoluminescence. In specific gravity separates of the coal, 100% of the quartz examined in the lightest gravity separates did not luminesce. In the heaviest gravity separates, which included shale-parting material, 60% of the quartz did not luminesce. In contrast, in a sample of shale directly overlying the coal bed, more than 90% of the quartz luminesced. On the basis of these cathodoluminescence data and other published data, quartz in the Upper Freeport coal bed is interpreted to be authigenic in origin. The authigenic quartz grains are postulated to have been derived from phytoclasts.

Collaboration


Dive into the Leslie F. Ruppert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter D. Warwick

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Michael H. Trippi

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Sharon S. Crowley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Susan J. Tewalt

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Pontolillo

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Sharon M. Swanson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Yuri B. Melnichenko

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard Sakurovs

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge