Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Pontolillo is active.

Publication


Featured researches published by James Pontolillo.


Marine Chemistry | 2000

Diagenetic fate of organic contaminants on the Palos Verdes Shelf, California

Robert P. Eganhouse; James Pontolillo; T. J. Leiker

Municipal wastes discharged through deepwater submarine outfalls since 1937 have contaminated sediments of the Palos Verdes Shelf. A site approximately 6–8 km downcurrent from the outfall system was chosen for a study of the diagenetic fate of organic contaminants in the waste-impacted sediments. Concentrations of three classes of hydrophobic organic contaminants (DDT+metabolites, polychlorinated biphenyls (PCBs), and the long-chain alkylbenzenes) were determined in sediment cores collected at the study site in 1981 and 1992. Differences between the composition of effluent from the major source of DDT (Montrose Chemical) and that found in sediments suggests that parent DDT was transformed by hydrolytic dehydrochlorination during the earliest stages of diagenesis. As a result, p,p′-DDE is the dominant DDT metabolite found in shelf sediments, comprising 60–70% of ΣDDT. The p,p-DDE/p,p′-DDMU concentration ratio decreases with increasing sub-bottom depth in sediment cores, indicating that reductive dechlorination of p,p′-DDE is occurring. Approximately 9–23% of the DDE inventory in the sediments may have been converted to DDMU since DDT discharges began ca. 1953. At most, this is less than half of the decline in p,p′-DDE inventory that has been observed at the study site for the period 1981–1995. Most of the observed decrease is attributable to remobilization by processes such as sediment mixing coupled to resuspension, contaminant desorption, and current advection. Existing field data suggest that the in situ rate of DDE transformation is 102–103 times slower than rates determined in recent laboratory microcosm experiments (Quensen, J.F., Mueller, S.A., Jain, M.K., Tiedje, J.M., 1998. Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science, 280, 722–724.). This explains why the DDT composition (i.e. o,p′-, p,p′-isomers of DDE, DDD, DDT) of sediments from this site have not changed significantly since at least 1972. Congener-specific PCB compositions in shelf sediments are highly uniform and show no evidence of diagenetic transformation. Apparently, the agents/factors responsible for reductive dechlorination of DDE are not also effecting alteration of the PCBs. Two types of long-chain alkylbenzenes were found in the contaminated sediments. Comparison of chain length and isomer distributions of the linear alkylbenzenes in wastewater effluent and surficial sediment samples indicate that these compounds undergo biodegradation during sedimentation. Further degradation of the linear alkylbenzenes occurs after burial despite relatively invariant isomer compositions. The branched alkylbenzenes are much more persistent than the linear alkylbenzenes, presumably due to extensive branching of the alkyl side chain. Based on these results, p,p′-DDE, PCBs, and selected branched alkylbenzenes are sufficiently persistent for use in molecular stratigraphy. The linear alkylbenzenes may also provide information on depositional processes. However, their application as quantitative molecular tracers should be approached with caution.


Environmental Science & Technology | 2009

Isomer-specific determination of 4-nonylphenols using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry.

Robert P. Eganhouse; James Pontolillo; Richard B. Gaines; Glenn S. Frysinger; Frédéric L. P. Gabriel; Hans-Peter E. Kohler; Walter Giger; Larry B. Barber

Technical nonylphenol (tNP), used for industrial production of nonylphenol polyethoxylate surfactants, is a complex mixture of C(3-10)-phenols. The major components, 4-nonylphenols, are weak endocrine disruptors whose estrogenicities vary according to the structure of the branched nonyl group. Thus, accurate risk assessment requires isomer-specific determination of 4-NPs. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/ToFMS) was used to characterize tNP samples obtained from seven commercial suppliers. Under optimal chromatographic conditions, 153-204 alkylphenol peaks, 59-66 of which were identified as 4-NPs, were detected. The 4-NPs comprised approximately 86-94% of tNP, with 2-NPs and decylphenols making up approximately 2-9% and approximately 2-5%, respectively. The tNP products were analyzed for eight synthetic 4-NP isomers, and results were compared with published data based on GC/MS analysis. Significant differences were found among the products and between two samples from a single supplier. The enhanced resolution of GC x GC coupled with fast mass spectral data acquisition by ToFMS facilitated identification of all major 4-NP isomers and a number of previously unrecognized components. Analysis of tNP altered by the bacterium, Sphingobium xenophagum Bayram, revealed several persistent 4-NPs whose structures and estrogenicities are presently unknown. The potential of this technology for isomer-specific determination of 4-NP isomers in environmental matrices is demonstrated using samples of wastewater-contaminated groundwater and municipal wastewater.


Marine Chemistry | 2000

Depositional history of organic contaminants on the Palos Verdes Shelf, California

Robert P. Eganhouse; James Pontolillo

Abstract During more than 60 years, sedimentation on the Palos Verdes Shelf has been dominated by time-varying inputs of municipal wastewater from the Los Angeles County Sanitation Districts (LACSD) and debris from the Portuguese Bend Landslide (PBL). The present study examines the depositional history of wastewater-derived organic contaminants at a site approximately 6–8 km downcurrent from the outfall system. Sediments at this location are impacted by contributions from both sources, but the relative influence of the sources has changed over time. Two classes of hydrophobic organic contaminants (chlorinated hydrocarbons, long-chain alkylbenzenes) were determined in sediment cores collected in 1981 and 1992. Using molecular stratigraphy, we determined average sedimentation rates (cm/year) and mass accumulation rates (g cm −2 year −1 ) for the following periods: 1955–1965, 1965–1971, 1971–1981 and 1981–1992. The results show that sedimentation and mass accumulation rates increased from 1955 to 1971 and decreased from 1971 to 1981. These trends are consistent with historical information on the emission of suspended solids from the outfall system, indicating that the discharge of wastes dominated sedimentation at the site during this period. In the 1980s and early 1990s, however, mass accumulation rates increased in spite of continually decreasing emissions of wastewater solids. Several lines of evidence indicate that this increase was due to mobilization of debris from the PBL during and after unusually strong winter storms in the 1980s. As a result, heavily contaminated sediments deposited during the years of greatest waste emissions (i.e. 1950–1970) have been buried to greater sub-bottom depths, thereby reducing their availability for mobilization to the overlying water column. These results highlight the dynamic nature of sedimentation in contaminated coastal ecosystems and its importance to the long-term fate and effects of toxic substances.


Journal of Chromatography A | 2012

Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry

Caixiang Zhang; Robert P. Eganhouse; James Pontolillo; Isabelle M. Cozzarelli; Yanxin Wang

4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid-liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC×GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment.


International Journal of Coal Geology | 1997

Petrography and geochemistry of selected lignite beds in the Gibbons Creek mine (Manning Formation, Jackson Group, Paleocene) of east-central Texas

Peter D. Warwick; Sharon S. Crowley; Leslie F. Ruppert; James Pontolillo

This study examined the petrographic and geochemical characteristics of two lignite beds (3500 and 4500 beds, Manning Formation, Jackson Group, Eocene) that are mined at the Gibbons Creek mine in east-central Texas. The purpose of the study was to identify the relations among sample ash yield, coal petrography, and trace-element concentrations in lignite and adjoining rock layers of the Gibbons Creek mine. Particular interest was given to the distribution of 12 environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Act Amendments of 1990. Eleven lignite, floor, and rock parting samples were collected from incremental channel samples of the 3500 and 4500 beds that were exposed in a highwall of pit A3 at the Gibbons Creek mine. Short proximate and ultimate and forms of sulfur analyses were performed on all lignite samples, and lignite and rock samples were analyzed for 60 major, minor and trace elements. Representative splits of all lignite samples were ground and cast into pellets, and polished for petrographic analyses in blue-light fluorescence and reflected white light to determine liptinite, inertinite, and huminite maceral group percentages. The following observations summarize our results and conclusions about the geochemistry, petrography, and sedimentology of the 3500 and 4500 beds of the Gibbons Creek lignite deposit: (1) Weighted average dry (db) ash yield for the two beds is 29.7%, average total sulfur content is 2.6%, and average calorific value is 7832 Btu (18.22 MJ/kg). Ash yields are greatest in the lower bench (59.33% db) of the 3500 bed and in the upper bench of the 4500 bed (74.61% db). (2) For lignite samples (on a whole-coal basis), the distributions of two of the HAPs (Pb and Sb) are positively related to ash yield, probably indicating an inorganic affinity for these elements. By using cluster analysis we found that Be and Cd were poorly associated with ash yield, indicating a possible organic affinity, and that Ni, Se, Hg, U, and Pb cluster with most of the rare-earth elements. (3) The dominance of the crypto-eugelinite maceral subgroup over the crypto-humotelinite subgroup suggests that all Gibbons Creek lignites were subjected to peat-forming conditions (either biogenic or chemical) conducive to the degradation of wood cellular material into matrix gels, or that original plant material was not very woody and was prone to formation of matrix gels. The latter idea is supported by pollen studies of Gibbons Creek lignite beds; results indicate that the peat was derived in part from marsh plants low in wood tissue. (4) The occurrence of siliceous sponge spicules in the lower benches of the 3500 bed suggests the original peat in this part of the bed was deposited in standing, fresh water. (5) The petrographic data indicate that the upper sample interval of the 3500 bed contains more inertinite (3%) than the other samples studied. Increases in inertinite content in the upper part of the 3500 bed may have been associated with alteration of the peat by acids derived from the volcanic ash or could have been caused by fire, oxidation and drying, or biologic alteration of the peat in the paleo-mire.


International Journal of Coal Geology | 1997

The origin and distribution of HAPs elements in relation to maceral composition of the A1 lignite bed (Paleocene, Calvert Bluff Formation, Wilcox Group), Calvert mine area, east-central Texas

Sharon S. Crowley; Peter D. Warwick; Leslie F. Ruppert; James Pontolillo

Abstract The origin and distribution of twelve potentially Hazardous Air Pollutants (HAPs; As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) identified in the 1990 Clean Air Act Amendments were examined in relation to the maceral composition of the A1 bed (Paleocene, Calvert Bluff Formation, Wilcox Group) of the Calvert mine in east-central Texas. The 3.2 m-thick A1 bed was divided into nine incremental channel samples (7 lignite samples and 2 shaley coal samples) on the basis of megascopic characteristics. Results indicate that As, Cd, Cr, Ni, Pb, Sb, and U are strongly correlated with ash yield and are enriched in the shaley coal samples. We infer that these elements are associated with inorganic constituents in the coal bed and may be derived from a penecontemporaneous stream channel located several kilometers southeast of the mining block. Of the HAPs elements studied, Mn and Hg are the most poorly correlated to ash yield. We infer an organic association for Mn; Hg may be associated with pyrite. The rest of the trace elements (Be, Co, and Se) are weakly correlated with ash yield. Further analytical work is necessary to determine the mode of occurrence for these elements. Overall, concentrations of the HAPs elements are generally similar to or less than those reported in previous studies of lignites of the Wilcox Group, east-central region, Texas. Petrographic analysis indicates the following ranges in composition for the seven lignite samples: liptinites (5–8%), huminites (88–95%), and inertinites (trace amounts to 7%). Samples from the middle portion of the A1 bed contain abundant crypto-eugelinite compared to the rest of the samples; this relationship suggests that the degradation of plant material was an important process during the development of the peat mire. With the exception of Hg and Mn, relatively low levels of the HAPs elements studied are found in the samples containing abundant crypto-eugelinite. We infer that the peat-forming environment for this portion of the coal bed was very wet with minimal detrital input. Relatively high concentrations of crypto-humotelinite were found in samples from the top and base of the coal bed. The presence of abundant crypto-humotefinite in this part of the coal bed suggests the accumulation of wood-rich peat under conditions conducive to a high degree of tissue preservation in the peat mire. Although several of the trace elements (Be, Co, Ni, and Sb) exhibit enrichment in these samples, they are not necessarily chemically associated with humotelinite. We infer that these elements, with the exception of Be, are possibly associated with deposition of the roof and floor rock of the coal bed; however, further analytical work would be necessary to confirm this hypothesis. Beryllium may have an organic origin.


Water-Resources Investigations Report | 2001

The search for reliable aqueous solubility (Sw) and octanol-water partition coefficient (Kow) data for hydrophobic organic compounds; DDT and DDE as a case study

James Pontolillo; Robert P. Eganhouse


Environmental Science & Technology | 2008

DDE in sediments of the Palos Verdes Shelf, California: in situ transformation rates and geochemical fate.

Robert P. Eganhouse; James Pontolillo


Environmental Science & Technology | 2008

Susceptibility of Synthetic Long-Chain Alkylbenzenes to Degradation in Reducing Marine Sediments

Robert P. Eganhouse; James Pontolillo


Organic Geochemistry | 1996

Petrography and geochemistry of the San Miguel lignite, Jackson Group (Eocene), south Texas

Peter D. Warwick; Sharon S. Crowley; Leslie F. Ruppert; James Pontolillo

Collaboration


Dive into the James Pontolillo's collaboration.

Top Co-Authors

Avatar

Robert P. Eganhouse

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Leslie F. Ruppert

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Peter D. Warwick

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Sharon S. Crowley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Brian D. Edwards

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

William H. Orem

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Sherwood

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Erica L. DiFilippo

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick J. Dickhudt

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge