Leticia Monin
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leticia Monin.
PLOS Pathogens | 2014
Radha Gopal; Leticia Monin; Samantha Slight; Uzodinma Uche; Emmeline Blanchard; Beth A. Fallert Junecko; Rosalío Ramos-Payán; Christina L. Stallings; Todd A. Reinhart; Jay K. Kolls; Deepak Kaushal; Uma M. Nagarajan; Javier Rangel-Moreno; Shabaana A. Khader
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), infects one third of the worlds population. Among these infections, clinical isolates belonging to the W-Beijing appear to be emerging, representing about 50% of Mtb isolates in East Asia, and about 13% of all Mtb isolates worldwide. In animal models, infection with W-Beijing strain, Mtb HN878, is considered “hypervirulent” as it results in increased mortality and causes exacerbated immunopathology in infected animals. We had previously shown the Interleukin (IL) -17 pathway is dispensable for primary immunity against infection with the lab adapted Mtb H37Rv strain. However, it is not known whether IL-17 has any role to play in protective immunity against infection with clinical Mtb isolates. We report here that lab adapted Mtb strains, such as H37Rv, or less virulent Mtb clinical isolates, such as Mtb CDC1551, do not require IL-17 for protective immunity against infection while infection with Mtb HN878 requires IL-17 for early protective immunity. Unexpectedly, Mtb HN878 induces robust production of IL-1β through a TLR-2-dependent mechanism, which supports potent IL-17 responses. We also show that the role for IL-17 in mediating protective immunity against Mtb HN878 is through IL-17 Receptor signaling in non-hematopoietic cells, mediating the induction of the chemokine, CXCL-13, which is required for localization of T cells within lung lymphoid follicles. Correct T cell localization within lymphoid follicles in the lung is required for maximal macrophage activation and Mtb control. Since IL-17 has a critical role in vaccine-induced immunity against TB, our results have far reaching implications for the design of vaccines and therapies to prevent and treat emerging Mtb strains. In addition, our data changes the existing paradigm that IL-17 is dispensable for primary immunity against Mtb infection, and instead suggests a differential role for IL-17 in early protective immunity against emerging Mtb strains.
American Journal of Respiratory and Critical Care Medicine | 2013
Radha Gopal; Leticia Monin; Diana Torres; Samantha Slight; Smriti Mehra; Kyle C. McKenna; Beth A. Fallert Junecko; Todd A. Reinhart; Jay K. Kolls; Renata Báez-Saldaña; Alfredo Cruz-Lagunas; Tatiana Sofía Rodríguez-Reyna; Nathella Pavan Kumar; Phillipe Tessier; J. Roth; Moisés Selman; Enrique Becerril-Villanueva; Javier Baquera-Heredia; Bridgette M. Cumming; Victoria Kasprowicz; Adrie J. C. Steyn; Subash Babu; Deepak Kaushal; Joaquín Zúñiga; Thomas Vogl; Javier Rangel-Moreno; Shabaana A. Khader
RATIONALE A hallmark of pulmonary tuberculosis (TB) is the formation of granulomas. However, the immune factors that drive the formation of a protective granuloma during latent TB, and the factors that drive the formation of inflammatory granulomas during active TB, are not well defined. OBJECTIVES The objective of this study was to identify the underlying immune mechanisms involved in formation of inflammatory granulomas seen during active TB. METHODS The immune mediators involved in inflammatory granuloma formation during TB were assessed using human samples and experimental models of Mycobacterium tuberculosis infection, using molecular and immunologic techniques. MEASUREMENTS AND MAIN RESULTS We demonstrate that in human patients with active TB and in nonhuman primate models of M. tuberculosis infection, neutrophils producing S100 proteins are dominant within the inflammatory lung granulomas seen during active TB. Using the mouse model of TB, we demonstrate that the exacerbated lung inflammation seen as a result of neutrophilic accumulation is dependent on S100A8/A9 proteins. S100A8/A9 proteins promote neutrophil accumulation by inducing production of proinflammatory chemokines and cytokines, and influencing leukocyte trafficking. Importantly, serum levels of S100A8/A9 proteins along with neutrophil-associated chemokines, such as keratinocyte chemoattractant, can be used as potential surrogate biomarkers to assess lung inflammation and disease severity in human TB. CONCLUSIONS Our results thus show a major pathologic role for S100A8/A9 proteins in mediating neutrophil accumulation and inflammation associated with TB. Thus, targeting specific molecules, such as S100A8/A9 proteins, has the potential to decrease lung tissue damage without impacting protective immunity against TB.
Immunity | 2016
Pawan Kumar; Leticia Monin; Patricia Castillo; Waleed Elsegeiny; William Horne; Taylor Eddens; Amit Vikram; Misty Good; Alexi A. Schoenborn; Kyle Bibby; Ronald C. Montelaro; Dennis W. Metzger; Ajay S. Gulati; Jay K. Kolls
Interleukin-17 (IL-17) and IL-17 receptor (IL-17R) signaling are essential for regulating mucosal host defense against many invading pathogens. Commensal bacteria, especially segmented filamentous bacteria (SFB), are a crucial factor that drives T helper 17 (Th17) cell development in the gastrointestinal tract. In this study, we demonstrate that Th17 cells controlled SFB burden. Disruption of IL-17R signaling in the enteric epithelium resulted in SFB dysbiosis due to reduced expression of α-defensins, Pigr, and Nox1. When subjected to experimental autoimmune encephalomyelitis, IL-17R-signaling-deficient mice demonstrated earlier disease onset and worsened severity that was associated with increased intestinal Csf2 expression and elevated systemic GM-CSF cytokine concentrations. Conditional deletion of IL-17R in the enteric epithelium demonstrated that there was a reciprocal relationship between the gut microbiota and enteric IL-17R signaling that controlled dysbiosis, constrained Th17 cell development, and regulated the susceptibility to autoimmune inflammation.
Mucosal Immunology | 2015
Leticia Monin; Kristin L. Griffiths; Samantha Slight; Yinyao Lin; Javier Rangel-Moreno; Shabaana A. Khader
Tuberculosis (TB) vaccine development has focused largely on targeting T helper type 1 (Th1) cells. However, despite inducing Th1 cells, the recombinant TB vaccine MVA85A failed to enhance protection against TB disease in humans. In recent years, Th17 cells have emerged as key players in vaccine-induced protection against TB. However, the exact cytokine and immune requirements that enable Th17-induced recall protection remain unclear. In this study, we have investigated the requirements for Th17 cell-induced recall protection against Mycobacterium tuberculosis (Mtb) challenge by utilizing a tractable adoptive transfer model in mice. We demonstrate that adoptive transfer of Mtb-specific Th17 cells into naive hosts, and upon Mtb challenge, results in Th17 recall responses that confer protection at levels similar to vaccination strategies. Importantly, although interleukin (IL)-23 is critical, IL-12 and IL-21 are dispensable for protective Th17 recall responses. Unexpectedly, we demonstrate that interferon-γ (IFN-γ) produced by adoptively transferred Th17 cells impairs long-lasting protective recall immunity against Mtb challenge. In contrast, CXCR5 expression is crucial for localization of Th17 cells near macrophages within well-formed B-cell follicles to mediate Mtb control. Thus, our data identify new immune characteristics that can be harnessed to improve Th17 recall responses for enhancing vaccine design against TB.
Journal of Clinical Investigation | 2015
Leticia Monin; Kristin L. Griffiths; Wing Y. Lam; Radha Gopal; Dongwan D. Kang; Mushtaq Ahmed; Anuradha Rajamanickam; Alfredo Cruz-Lagunas; Joaquín Zúñiga; Subash Babu; Jay K. Kolls; Makedonka Mitreva; Bruce A. Rosa; Rosalío Ramos-Payán; Thomas E. Morrison; Peter J. Murray; Javier Rangel-Moreno; Edward J. Pearce; Shabaana A. Khader
Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1-expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1-expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB.
Seminars in Immunology | 2014
Leticia Monin; Shabaana A. Khader
Mycobacterium tuberculosis (Mtb) infects about one-third of the worlds population, with a majority of infected individuals exhibiting latent asymptomatic infection, while 5-10% of infected individuals progress to active pulmonary disease. Research in the past two decades has elucidated critical host immune mechanisms that mediate Mtb control. Among these, chemokines have been associated with numerous key processes that lead to Mtb containment, from recruitment of myeloid cells into the lung to activation of adaptive immunity, formation of protective granulomas and vaccine recall responses. However, imbalances in several key chemokine mediators can alter the delicate balance of cytokines and cellular responses that promote mycobacterial containment, instead precipitating terminal tissue destruction and spread of Mtb infection. In this review, we will describe recent insights in the involvement of chemokines in host responses to Mtb infection and Mtb containment (the good), chemokines contributing to inflammation during TB (the bad), and the role of chemokines in driving cavitation and lung pathology (the ugly).
Journal of Immunology | 2014
Ranjna Madan-Lala; Jonathan Kevin Sia; Rebecca King; Toidi Adekambi; Leticia Monin; Shabaana A. Khader; Bali Pulendran; Jyothi Rengarajan
Mycobacterium tuberculosis is a highly successful human pathogen that primarily resides in host phagocytes, such as macrophages and dendritic cells (DCs), and interferes with their functions. Although multiple strategies used by M. tuberculosis to modulate macrophage responses have been discovered, interactions between M. tuberculosis and DCs are less well understood. DCs are the primary APCs of the immune system and play a central role in linking innate and adaptive immune responses to microbial pathogens. In this study, we show that M. tuberculosis impairs DC cytokine secretion, maturation, and Ag presentation through the cell envelope–associated serine hydrolase, Hip1. Compared to wild-type, a hip1 mutant strain of M. tuberculosis induced enhanced levels of the key Th1-inducing cytokine IL-12, as well as other proinflammatory cytokines (IL-23, IL-6, TNF-α, IL-1β, and IL-18) in DCs via MyD88- and TLR2/9-dependent pathways, indicating that Hip1 restricts optimal DC inflammatory responses. Infection with the hip1 mutant also induced higher levels of MHC class II and costimulatory molecules CD40 and CD86, indicating that M. tuberculosis impairs DC maturation through Hip1. Further, we show that M. tuberculosis promotes suboptimal Ag presentation, as DCs infected with the hip1 mutant showed increased capacity to present Ag to OT-II– and early secreted antigenic target 6–specific transgenic CD4 T cells and enhanced Th1 and Th17 polarization. Overall, these data show that M. tuberculosis impairs DC functions and modulates the nature of Ag-specific T cell responses, with important implications for vaccination strategies.
American Journal of Pathology | 2013
Samantha Slight; Leticia Monin; Radha Gopal; Lyndsay Avery; Marci Davis; Hillary Cleveland; Tim D. Oury; Javier Rangel-Moreno; Shabaana A. Khader
IL-10 production during intracellular bacterial infections is generally thought to be detrimental because of its role in suppressing protective T-helper cell 1 (Th1) responses. Francisella tularensis is a facultative intracellular bacterium that activates both Th1 and Th17 protective immune responses. Herein, we report that IL-10-deficient mice (Il10(-/-)), despite having increased Th1 and Th17 responses, exhibit increased mortality after pulmonary infection with F. tularensis live vaccine strain. We demonstrate that the increased mortality observed in Il10(-/-)-infected mice is due to exacerbated IL-17 production that causes increased neutrophil recruitment and associated lung pathology. Thus, although IL-17 is required for protective immunity against pulmonary infection with F. tularensis live vaccine strain, its production is tightly regulated by IL-10 to generate efficient induction of protective immunity without mediating pathology. These data suggest a critical role for IL-10 in maintaining the delicate balance between host immunity and pathology during pulmonary infection with F. tularensis live vaccine strain.
Journal of Immunology | 2017
Leticia Monin; Johann E. Gudjonsson; Eerin E. Childs; Nilesh Amatya; Xianying Xing; Akash H. Verma; Bianca M. Coleman; Abhishek V. Garg; Meaghan E. Killeen; Alicia R. Mathers; Nicole L. Ward; Sarah L. Gaffen
The IL-17 family cytokines IL-17A and IL-17C drive the pathogenesis of psoriatic skin inflammation, and anti–IL-17A Abs were recently approved to treat human psoriasis. Little is known about mechanisms that restrain IL-17 cytokine-mediated signaling, particularly IL-17C. In this article, we show that the endoribonuclease MCP-1–induced protein 1 (MCPIP1; also known as regnase-1) is markedly upregulated in human psoriatic skin lesions. Similarly, MCPIP1 was overexpressed in the imiquimod (IMQ)-driven mouse model of cutaneous inflammation. Mice with an MCPIP1 deficiency (Zc3h12a+/−) displayed no baseline skin inflammation, but they showed exacerbated pathology following IMQ treatment. Pathology in Zc3h12a+/− mice was associated with elevated expression of IL-17A– and IL-17C–dependent genes, as well as with increased accumulation of neutrophils in skin. However, IL-17A and IL-17C expression was unaltered, suggesting that the increased inflammation in Zc3h12a+/− mice was due to enhanced downstream IL-17R signaling. Radiation chimeras demonstrated that MCPIP1 in nonhematopoietic cells is responsible for controlling skin pathology. Moreover, Zc3h12a+/−Il17ra−/− mice given IMQ showed almost no disease. To identify which IL-17RA ligand was essential, Zc3h12a+/−Il17a−/− and Zc3h12a+/−Il17c−/− mice were given IMQ; these mice had reduced but not fully abrogated pathology, indicating that MCPIP1 inhibits IL-17A and IL-17C signaling. Confirming this hypothesis, Zc3h12a−/− keratinocytes showed increased responsiveness to IL-17A and IL-17C stimulation. Thus, MCPIP1 is a potent negative regulator of psoriatic skin inflammation through IL-17A and IL-17C. Moreover, to our knowledge, MCPIP1 is the first described negative regulator of IL-17C signaling.
Cold Spring Harbor Perspectives in Biology | 2018
Leticia Monin; Sarah L. Gaffen
The cytokines of the interleukin 17 (IL-17) family play a central role in the control of infections, especially extracellular fungi. Conversely, if unrestrained, these inflammatory cytokines contribute to the pathology of numerous autoimmune and chronic inflammatory conditions. Recent advances have led to the approval of IL-17A-blocking biologics for the treatment of moderate to severe plaque psoriasis, but much remains to be understood about the biological functions, regulation, and signaling pathways downstream of these factors. In this review, we outline the current knowledge of signal transduction and known physiological activities of IL-17 family cytokines. We will highlight in particular the current understanding of these cytokines in the context of skin manifestations of disease.