Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liang Tong is active.

Publication


Featured researches published by Liang Tong.


Nature | 2000

Structural basis for signal transduction by the Toll/interleukin-1 receptor domains.

Yingwu Xu; Xiao Tao; Baohe Shen; Tiffany Horng; Ruslan Medzhitov; James L. Manley; Liang Tong

Toll-like receptors (TLRs) and the interleukin-1 receptor superfamily (IL-1Rs) are integral to both innate and adaptive immunity for host defence. These receptors share a conserved cytoplasmic domain, known as the TIR domain. A single-point mutation in the TIR domain of murine TLR4 (Pro712His, the Lpsd mutation) abolishes the host immune response to lipopolysaccharide (LPS), and mutation of the equivalent residue in TLR2, Pro681His, disrupts signal transduction in response to stimulation by yeast and Gram-positive bacteria. Here we report the crystal structures of the TIR domains of human TLR1 and TLR2 and of the Pro681His mutant of TLR2. The structures have a large conserved surface patch that also contains the site of the Lpsd mutation. Mutagenesis and functional studies confirm that residues in this surface patch are crucial for receptor signalling. The Lpsd mutation does not disturb the structure of the TIR domain itself. Instead, structural and functional studies indicate that the conserved surface patch may mediate interactions with the downstream MyD88 adapter molecule, and that the Lps d mutation may abolish receptor signalling by disrupting this recruitment.


Nature | 1999

Structural basis for self-association and receptor recognition of human TRAF2.

Young Chul Park; Vicki Burkitt; Anthony R. Villa; Liang Tong; Hao Wu

Tumour necrosis factor (TNF)-receptor-associated factors (TRAFs) form a family of cytoplasmic adapter proteins that mediate signal transduction from many members of the TNF-receptor superfamily and the interleukin-1 receptor. They are important in the regulation of cell survival and cell death. The carboxy-terminal region of TRAFs (the TRAF domain) is required for self-association and interaction with receptors. The domain contains a predicted coiled-coil region that is followed by a highly conserved TRAF-C domain. Here we report the crystal structure of the TRAF domain of human TRAF2, both alone and in complex with a peptide from TNF receptor-2 (TNF-R2). The structures reveal a trimeric self-association of the TRAF domain, which we confirm by studies in solution. The TRAF-C domain forms a new, eight-stranded antiparallel β-sandwich structure. The TNF-R2 peptide binds to a conserved shallow surface depression on one TRAF-C domain and does not contact the other protomers of the trimer. The nature of the interaction indicates that an SXXE motif may be a TRAF2-binding consensus sequence. The trimeric structure of the TRAF domain provides an avidity-based explanation for the dependence of TRAF recruitment on the oligomerization of the receptors by their trimeric extracellular ligands.


Nature Structural & Molecular Biology | 1996

Crystal structure of dimeric HIV-1 capsid protein.

Cory Momany; Ladislau C. Kovari; Andrew Prongay; Walter Keller; Rossitza K. Gitti; Brian M. Lee; Alexander E. Gorbalenya; Liang Tong; Jan McClure; Lorna S. Ehrlich; Michael F. Summers; Carol A. Carter; Michael G. Rossmann

X-ray diffraction analysis of a human immunodeficiency virus (HIV-1) capsid (CA) protein shows that each monomer within the dimer consists of seven α-helices, five of which are arranged in a coiled coil-like structure. Sequence assignments were made for two of the helices, and tentative connectivity of the remainder of the protein was confirmed by the recent solution structure of a monomeric N-terminal fragment. The C-terminal third of the protein is mostly disordered in the crystal. The longest helices in the coiled coil-like structure are separated by a long, highly antigenic peptide that includes the binding site of an antibody fragment complexed with CA in the crystal. The site of binding of the Fab, the position of the antigenic loop and the site of cleavage between the matrix protein and CA establish the side of the dimer that would be on the exterior of the retroviral core.


Cellular and Molecular Life Sciences | 2008

Protein factors in pre-mRNA 3′-end processing

Corey R. Mandel; Yun Bai; Liang Tong

Abstract.Most eukaryotic mRNA precursors (premRNAs) must undergo extensive processing, including cleavage and polyadenylation at the 3′-end. Processing at the 3′-end is controlled by sequence elements in the pre-mRNA (cis elements) as well as protein factors. Despite the seeming biochemical simplicity of the processing reactions, more than 14 proteins have been identified for the mammalian complex, and more than 20 proteins have been identified for the yeast complex. The 3′-end processing machinery also has important roles in transcription and splicing. The mammalian machinery contains several sub-complexes, including cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Additional protein factors include poly(A) polymerase, poly(A)-binding protein, symplekin, and the C-terminal domain of RNA polymerase II largest subunit. The yeast machinery includes cleavage factor IA, cleavage factor IB, and cleavage and polyadenylation factor.


Cellular and Molecular Life Sciences | 2005

Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery

Liang Tong

Abstract.Acetyl-coenzyme A carboxylases (ACCs) have crucial roles in fatty acid metabolism in most living organisms. Mice deficient in ACC2 have continuous fatty acid oxidation and reduced body fat and body weight, validating this enzyme as a target for drug development against obesity, diabetes and other symptoms of the metabolic syndrome. ACC is a biotin-dependent enzyme and catalyzes the carboxylation of acetyl-CoA to produce malonyl-CoA through its two catalytic activities, biotin carboxylase (BC) and carboxyltransferase (CT). ACC is a multi-subunit enzyme in most prokaryotes, whereas it is a large, multi-domain enzyme in most eukaryotes. The activity of the enzyme can be controlled at the transcriptional level as well as by small molecule modulators and covalent modification. This review will summarize the structural information that is now available for both the BC and CT enzymes, as well as the molecular mechanism of action of potent ACC inhibitors. The current intense research on these enzymes could lead to the development of novel therapies against metabolic syndrome and other diseases.


Nature | 2006

Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease

Corey R. Mandel; Syuzo Kaneko; Hailong Zhang; Damara Gebauer; Vasupradha Vethantham; James L. Manley; Liang Tong

Most eukaryotic messenger RNA precursors (pre-mRNAs) undergo extensive maturational processing, including cleavage and polyadenylation at the 3′-end. Despite the characterization of many proteins that are required for the cleavage reaction, the identity of the endonuclease is not known. Recent analyses indicated that the 73-kDa subunit of cleavage and polyadenylation specificity factor (CPSF-73) might be the endonuclease for this and related reactions, although no direct data confirmed this. Here we report the crystal structures of human CPSF-73 at 2.1 Å resolution, complexed with zinc ions and a sulphate that might mimic the phosphate group of the substrate, and the related yeast protein CPSF-100 (Ydh1) at 2.5 Å resolution. Both CPSF-73 and CPSF-100 contain two domains, a metallo-β-lactamase domain and a novel β-CASP (named for metallo-β-lactamase, CPSF, Artemis, Snm1, Pso2) domain. The active site of CPSF-73, with two zinc ions, is located at the interface of the two domains. Purified recombinant CPSF-73 possesses RNA endonuclease activity, and mutations that disrupt zinc binding in the active site abolish this activity. Our studies provide the first direct experimental evidence that CPSF-73 is the pre-mRNA 3′-end-processing endonuclease.


Methods in Enzymology | 1997

ROTATION FUNCTION CALCULATIONS WITH GLRF PROGRAM

Liang Tong; Michael G. Rossmann

Publisher Summary This chapter discusses the rotation function calculation with the GLRF program. The calculation of rotation functions represents the first step in structure determination by the molecular-replacement method. Rotation functions can be used to determine the orientation of a noncrystallographic axis in a crystal or the orientation of a search model relative to the molecules in a crystal. In the second step, rotational parameters can be used to determine the position of the noncrystallographic symmetry in the crystal or the position of the search model in the crystal. The information on the orientation and position of a search model leads to an initial solution for the crystal structure. Finally, the orientation and position of the noncrystallographic symmetry axes can be used to determine an initial phasing set, as well as to improve and extend the phase information.


Nature | 2004

Structural Basis of the Alpha(1)-Beta Subunit Interaction of Voltage-Gated Ca(2+) Channels

Yu-hang Chen; Minghui Li; Yong Zhang; Lin-ling He; Yoichi Yamada; Aileen Fitzmaurice; Yang Shen; Hailong Zhang; Liang Tong; Jinlong Yang

High-voltage-activated Ca2+ channels are essential for diverse biological processes. They are composed of four or five subunits, including α1, α2-δ, β and γ (ref. 1). Their expression and function are critically dependent on the β-subunit, which transports α1 to the surface membrane and regulates diverse channel properties. It is believed that the β-subunit interacts with α1 primarily through the β-interaction domain (BID), which binds directly to the α-interaction domain (AID) of α1; however, the molecular mechanism of the α1–β interaction is largely unclear. Here we report the crystal structures of the conserved core region of β3, alone and in complex with AID, and of β4 alone. The structures show that the β-subunit core contains two interacting domains: a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain. The AID binds to a hydrophobic groove in the GK domain through extensive interactions, conferring extremely high affinity between α1 and β-subunits. The BID is essential both for the structural integrity of and for bridging the SH3 and GK domains, but it does not participate directly in binding α1. The presence of multiple protein-interacting modules in the β-subunit opens a new dimension to its function as a multi-functional protein.


Nature Structural & Molecular Biology | 2006

Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents

Javed A. Khan; Xiao Tao; Liang Tong

Nicotinamide phosphoribosyltransferase (NMPRTase) has a crucial role in the salvage pathway of NAD+ biosynthesis, and a potent inhibitor of NMPRTase, FK866, can reduce cellular NAD+ levels and induce apoptosis in tumors. We have determined the crystal structures at up to 2.1-Å resolution of human and murine NMPRTase, alone and in complex with the reaction product nicotinamide mononucleotide or the inhibitor FK866. The structures suggest that Asp219 is a determinant of substrate specificity of NMPRTase, which is confirmed by our mutagenesis studies. FK866 is bound in a tunnel at the interface of the NMPRTase dimer, and mutations in this binding site can abolish the inhibition by FK866. Contrary to current knowledge, the structures show that FK866 should compete directly with the nicotinamide substrate. Our structural and biochemical studies provide a starting point for the development of new anticancer agents.


Journal of Clinical Investigation | 2006

Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production

Grace Soong; Amanda Muir; Marisa I. Gómez; Jonathan W. Waks; Bharat Reddy; Paul J. Planet; Pradeep K. Singh; Yukihiro Kanetko; Matthew C. Wolfgang; Yu Shan Hsiao; Liang Tong; Alice Prince

Many respiratory pathogens, including Hemophilus influenzae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, express neuraminidases that can cleave alpha2,3-linked sialic acids from glycoconjugates. As mucosal surfaces are heavily sialylated, neuraminidases have been thought to modify epithelial cells by exposing potential bacterial receptors. However, in contrast to neuraminidase produced by the influenza virus, a role for bacterial neuraminidase in pathogenesis has not yet been clearly established. We constructed a mutant of P. aeruginosa PAO1 by deleting the PA2794 neuraminidase locus (Delta2794) and tested its virulence and immunostimulatory capabilities in a mouse model of infection. Although fully virulent when introduced i.p., the Delta2794 mutant was unable to establish respiratory infection by i.n. inoculation. The inability to colonize the respiratory tract correlated with diminished production of biofilm, as assessed by scanning electron microscopy and in vitro assays. The importance of neuraminidase in biofilm production was further demonstrated by showing that viral neuraminidase inhibitors in clinical use blocked P. aeruginosa biofilm production in vitro as well. The P. aeruginosa neuraminidase has a key role in the initial stages of pulmonary infection by targeting bacterial glycoconjugates and contributing to the formation of biofilm. Inhibiting bacterial neuraminidases could provide a novel mechanism to prevent bacterial pneumonia.

Collaboration


Dive into the Liang Tong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge