Scott Lew
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott Lew.
Journal of the American Chemical Society | 2012
Florian Richter; Rebecca Blomberg; Sagar D. Khare; Gert Kiss; Alexandre P. Kuzin; Adam J. T. Smith; Jasmine L. Gallaher; Zbigniew Pianowski; Roger C. Helgeson; Alexej Grjasnow; Rong Xiao; Jayaraman Seetharaman; Min Su; Sergey M. Vorobiev; Scott Lew; Farhad Forouhar; Gregory J. Kornhaber; John F. Hunt; Gaetano T. Montelione; Liang Tong; K. N. Houk; Donald Hilvert; David Baker
Nucleophilic catalysis is a general strategy for accelerating ester and amide hydrolysis. In natural active sites, nucleophilic elements such as catalytic dyads and triads are usually paired with oxyanion holes for substrate activation, but it is difficult to parse out the independent contributions of these elements or to understand how they emerged in the course of evolution. Here we explore the minimal requirements for esterase activity by computationally designing artificial catalysts using catalytic dyads and oxyanion holes. We found much higher success rates using designed oxyanion holes formed by backbone NH groups rather than by side chains or bridging water molecules and obtained four active designs in different scaffolds by combining this motif with a Cys-His dyad. Following active site optimization, the most active of the variants exhibited a catalytic efficiency (k(cat)/K(M)) of 400 M(-1) s(-1) for the cleavage of a p-nitrophenyl ester. Kinetic experiments indicate that the active site cysteines are rapidly acylated as programmed by design, but the subsequent slow hydrolysis of the acyl-enzyme intermediate limits overall catalytic efficiency. Moreover, the Cys-His dyads are not properly formed in crystal structures of the designed enzymes. These results highlight the challenges that computational design must overcome to achieve high levels of activity.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Danielle C. Lohman; Farhad Forouhar; Emily T. Beebe; Matthew S. Stefely; Catherine E. Minogue; Arne Ulbrich; Jonathan A. Stefely; Shravan Sukumar; Marta Luna-Sánchez; Adam Jochem; Scott Lew; Jayaraman Seetharaman; Rong Xiao; Huang Wang; Michael S. Westphall; Russell L. Wrobel; John K. Everett; Julie C. Mitchell; Luis C. López; Joshua J. Coon; Liang Tong; David J. Pagliarini
Significance Coenzyme Q (CoQ) is a requisite component of the mitochondrial oxidative phosphorylation machinery that produces more than 90% of cellular ATP. Despite the discovery of CoQ more than 50 years ago, many aspects of its biosynthesis remain obscure. These include the functions of uncharacterized CoQ-related proteins whose disruption can cause human diseases. Our work reveals that one such protein, COQ9, is a lipid-binding protein that enables CoQ biosynthesis through its physical and functional interaction with COQ7, and via its stabilization of the entire CoQ biosynthetic complex. Unexpectedly, COQ9 achieves these functions by repurposing an ancient bacterial fold typically used for transcriptional regulation. Collectively, our work adds new insight into a core component of the CoQ biosynthesis process. Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1–9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis.
ACS Chemical Biology | 2013
Sinisa Bjelic; Lucas G. Nivón; Nihan Çelebi-Ölçüm; Gert Kiss; Carolyn F. Rosewall; Helena M. Lovick; Erica L. Ingalls; Jasmine L. Gallaher; Jayaraman Seetharaman; Scott Lew; Gaetano T. Montelione; John F. Hunt; Forrest E. Michael; K. N. Houk; David Baker
The Morita-Baylis-Hillman reaction forms a carbon-carbon bond between the α-carbon of a conjugated carbonyl compound and a carbon electrophile. The reaction mechanism involves Michael addition of a nucleophile catalyst at the carbonyl β-carbon, followed by bond formation with the electrophile and catalyst disassociation to release the product. We used Rosetta to design 48 proteins containing active sites predicted to carry out this mechanism, of which two show catalytic activity by mass spectrometry (MS). Substrate labeling measured by MS and site-directed mutagenesis experiments show that the designed active-site residues are responsible for activity, although rate acceleration over background is modest. To characterize the designed proteins, we developed a fluorescence-based screen for intermediate formation in cell lysates, carried out microsecond molecular dynamics simulations, and solved X-ray crystal structures. These data indicate a partially formed active site and suggest several clear avenues for designing more active catalysts.
Nature Chemical Biology | 2014
Sridharan Rajagopalan; Chu Wang; Kai Yu; Alexandre P. Kuzin; Florian Richter; Scott Lew; Aleksandr E Miklos; Megan L. Matthews; Jayaraman Seetharaman; Min Su; John F. Hunt; Benjamin F. Cravatt; David Baker
A challenge in the computational design of enzymes is that multiple properties must be simultaneously optimized -- substrate-binding, transition state stabilization, and product release -- and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads, and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate-reactivity. Following optimization by yeast-display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest the designs could provide the basis for a new class of organophosphate captures agents.
ACS Chemical Biology | 2013
Taavi K. Neklesa; Devin J. Noblin; Alexander P. Kuzin; Scott Lew; Jayaraman Seetharaman; Thomas B. Acton; Gregory J. Kornhaber; Rong Xiao; Gaetano T. Montelione; Liang Tong; Craig M. Crews
Small molecule control of intracellular protein levels allows temporal and dose-dependent regulation of protein function. Recently, we developed a method to degrade proteins fused to a mutant dehalogenase (HaloTag2) using small molecule hydrophobic tags (HyTs). Here, we introduce a complementary method to stabilize the same HaloTag2 fusion proteins, resulting in a unified system allowing bidirectional control of cellular protein levels in a temporal and dose-dependent manner. From a small molecule screen, we identified N-(3,5-dichloro-2-ethoxybenzyl)-2H-tetrazol-5-amine as a nanomolar HALoTag2 Stabilizer (HALTS1) that reduces the Hsp70:HaloTag2 interaction, thereby preventing HaloTag2 ubiquitination. Finally, we demonstrate the utility of the HyT/HALTS system in probing the physiological role of therapeutic targets by modulating HaloTag2-fused oncogenic H-Ras, which resulted in either the cessation (HyT) or acceleration (HALTS) of cellular transformation. In sum, we present a general platform to study protein function, whereby any protein of interest fused to HaloTag2 can be either degraded 10-fold or stabilized 5-fold using two corresponding compounds.
Structure | 2013
D.S. Froese; Farhad Forouhar; T H Tran; M. Vollmar; Y S Kim; Scott Lew; Helen Neely; Jayaraman Seetharaman; Y Shen; Rong Xiao; Thomas B. Acton; John K. Everett; Giuseppe Cannone; S. Puranik; P. Savitsky; T. Krojer; E.S. Pilka; W. Kiyani; Wen Hwa Lee; Brian D. Marsden; F von Delft; C.K. Allerston; Laura Spagnolo; O. Gileadi; Gaetano T. Montelione; U. Oppermann; W.W. Yue; Liang Tong
Summary Malonyl-coenzyme A decarboxylase (MCD) is found from bacteria to humans, has important roles in regulating fatty acid metabolism and food intake, and is an attractive target for drug discovery. We report here four crystal structures of MCD from human, Rhodopseudomonas palustris, Agrobacterium vitis, and Cupriavidus metallidurans at up to 2.3 Å resolution. The MCD monomer contains an N-terminal helical domain involved in oligomerization and a C-terminal catalytic domain. The four structures exhibit substantial differences in the organization of the helical domains and, consequently, the oligomeric states and intersubunit interfaces. Unexpectedly, the MCD catalytic domain is structurally homologous to those of the GCN5-related N-acetyltransferase superfamily, especially the curacin A polyketide synthase catalytic module, with a conserved His-Ser/Thr dyad important for catalysis. Our structures, along with mutagenesis and kinetic studies, provide a molecular basis for understanding pathogenic mutations and catalysis, as well as a template for structure-based drug design.
Protein Science | 2011
Adam W. Barb; John R. Cort; Jayaraman Seetharaman; Scott Lew; Hsiau-Wei Lee; Thomas B. Acton; Rong Xiao; Michael A. Kennedy; Liang Tong; Gaetano T. Montelione; James H. Prestegard
YbbR domains are widespread throughout Eubacteria and are expressed as monomeric units, linked in tandem repeats or cotranslated with other domains. Although the precise role of these domains remains undefined, the location of the multiple YbbR domain‐encoding ybbR gene in the Bacillus subtilis glmM operon and its previous identification as a substrate for a surfactin‐type phosphopantetheinyl transferase suggests a role in cell growth, division, and virulence. To further characterize the YbbR domains, structures of two of the four domains (I and IV) from the YbbR‐like protein of Desulfitobacterium hafniense Y51 were solved by solution nuclear magnetic resonance and X‐ray crystallography. The structures show the domains to have nearly identical topologies despite a low amino acid identity (23%). The topology is dominated by β‐strands, roughly following a “figure 8” pattern with some strands coiling around the domain perimeter and others crossing the center. A similar topology is found in the C‐terminal domain of two stress‐responsive bacterial ribosomal proteins, TL5 and L25. Based on these models, a structurally guided amino acid alignment identifies features of the YbbR domains that are not evident from naïve amino acid sequence alignments. A structurally conserved cis‐proline (cis‐Pro) residue was identified in both domains, though the local structure in the immediate vicinities surrounding this residue differed between the two models. The conservation and location of this cis‐Pro, plus anchoring Val residues, suggest this motif may be significant to protein function.
Scientific Reports | 2016
Ariel Lewis-Ballester; Farhad Forouhar; Sung Mi Kim; Scott Lew; YongQiang Wang; Shay Karkashon; Jayaraman Seetharaman; Dipanwita Batabyal; Bing Yu Chiang; Munif Hussain; Maria Almira Correia; Syun Ru Yeh; Liang Tong
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases.
ACS Chemical Biology | 2014
Sherif I. Elshahawi; Theresa A. Ramelot; Jayaraman Seetharaman; Jing Chen; Shanteri Singh; Yunhuang Yang; Kari Pederson; Madan K. Kharel; Rong Xiao; Scott Lew; Ragothaman M. Yennamalli; Mitchell D. Miller; Fengbin Wang; Liang Tong; Gaetano T. Montelione; Michael A. Kennedy; Craig A. Bingman; Haining Zhu; George N. Phillips; Jon S. Thorson
Calicheamicin γ1I (1) is an enediyne antitumor compound produced by Micromonospora echinospora spp. calichensis, and its biosynthetic gene cluster has been previously reported. Despite extensive analysis and biochemical study, several genes in the biosynthetic gene cluster of 1 remain functionally unassigned. Using a structural genomics approach and biochemical characterization, two proteins encoded by genes from the 1 biosynthetic gene cluster assigned as “unknowns”, CalU16 and CalU19, were characterized. Structure analysis revealed that they possess the STeroidogenic Acute Regulatory protein related lipid Transfer (START) domain known mainly to bind and transport lipids and previously identified as the structural signature of the enediyne self-resistance protein CalC. Subsequent study revealed calU16 and calU19 to confer resistance to 1, and reminiscent of the prototype CalC, both CalU16 and CalU19 were cleaved by 1in vitro. Through site-directed mutagenesis and mass spectrometry, we identified the site of cleavage in each protein and characterized their function in conferring resistance against 1. This report emphasizes the importance of structural genomics as a powerful tool for the functional annotation of unknown proteins.
Biochemistry | 2013
Christina M. Kronfel; Alexandre P. Kuzin; Farhad Forouhar; Avijit Biswas; Min Su; Scott Lew; Jayaraman Seetharaman; Rong Xiao; John K. Everett; Li-Chung Ma; Thomas B. Acton; Gaetano T. Montelione; John F. Hunt; Corry E. C. Paul; Tierna M. Dragomani; M. Nazim Boutaghou; Richard B. Cole; Christian Riml; Richard M. Alvey; Donald A. Bryant; Wendy M. Schluchter
Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded β barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.