Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lilli Winter is active.

Publication


Featured researches published by Lilli Winter.


Journal of Cell Biology | 2008

Plectin isoform 1b mediates mitochondrion–intermediate filament network linkage and controls organelle shape

Lilli Winter; Christina Abrahamsberg; Gerhard Wiche

Plectin is a versatile intermediate filament (IF)–bound cytolinker protein with a variety of differentially spliced isoforms accounting for its multiple functions. One particular isoform, plectin 1b (P1b), remains associated with mitochondria after biochemical fractionation of fibroblasts and cells expressing exogenous P1b. Here, we determined that P1b is inserted into the outer mitochondrial membrane with the exon 1b–encoded N-terminal sequence serving as a mitochondrial targeting and anchoring signal. To study P1b-related mitochondrial functions, we generated mice that selectively lack this isoform but express all others. In primary fibroblasts and myoblasts derived from these mice, we observe a substantial elongation of mitochondrial networks, whereas other mitochondrial properties remain largely unaffected. Normal morphology of mitochondria could be restored by isoform-specific overexpression of P1b in P1b-deficient as well as plectin-null cells. We propose a model where P1b both forms a mitochondrial signaling platform and affects organelle shape and network formation by tethering mitochondria to IFs.


Acta Neuropathologica | 2013

The many faces of plectin and plectinopathies: pathology and mechanisms

Lilli Winter; Gerhard Wiche

Plectin, a giant multifunctional cytolinker protein, plays a crucial role in stabilizing and orchestrating intermediate filament networks in cells. Mutations in the human plectin gene result in multiple diseases manifesting with muscular dystrophy, skin blistering, and signs of neuropathy. The most common disease caused by plectin deficiency is epidermolysis bullosa simplex (EBS)-MD, a rare autosomal-recessive skin blistering disorder with late-onset muscular dystrophy. EBS-MD patients and plectin-deficient mice display pathologic desmin-positive protein aggregates, degenerated myofibrils, and mitochondrial abnormalities, the hallmarks of myofibrillar myopathies. In addition to EBS-MD, plectin mutations have been shown to cause EBS-MD with a myasthenic syndrome, limb-girdle muscular dystrophy type 2Q, EBS with pyloric atresia, and EBS-Ogna. This review focuses on clinical and pathological manifestations of these plectinopathies. It addresses especially plectin’s role in skeletal muscle, where a loss of muscle fiber integrity and profound changes of myofiber cytoarchitecture are observed in its absence. Furthermore, the highly complex genetic and molecular structure of plectin is discussed; a high number of differentially spliced exons give rise to a variety of different isoforms, which fulfill distinct functions in different cell types and tissues. Plectin’s abilities to act as a dynamic organizer of intermediate filament networks and to interact with a multitude of different interaction partners are the basis for its function as a scaffolding platform for proteins involved in signaling. Finally, the article addresses a series of genetically manipulated mouse lines that were generated to serve as powerful models to study functional and molecular consequences of plectin gene defects.


Molecular Biology of the Cell | 2010

Keeping the Vimentin Network under Control: Cell–Matrix Adhesion–associated Plectin 1f Affects Cell Shape and Polarity of Fibroblasts

Gerald Burgstaller; Martin Gregor; Lilli Winter; Gerhard Wiche

Mature focal adhesions and fibrillar adhesions act as anchorage sites for vimentin filaments, with plectin isoform 1f being the crucial linker protein. Plectin serves as a nucleation and assembly center for the de novo formation of vimentin networks. Anchored vimentin creates a resilient cage-like core structure that affects cell shape.


BioArchitecture | 2011

Plectin isoforms as organizers of intermediate filament cytoarchitecture

Gerhard Wiche; Lilli Winter

Intermediate filaments (IFs) form cytoplamic and nuclear networks that provide cells with mechanical strength. Perturbation of this structural support causes cell and tissue fragility and accounts for a number of human genetic diseases. In recent years, important additional roles, nonmechanical in nature, were ascribed to IFs, including regulation of signaling pathways that control survival and growth of the cells, and vectorial processes such as protein targeting in polarized cellular settings. The cytolinker protein plectin anchors IF networks to junctional complexes, the nuclear envelope and cytoplasmic organelles, and it mediates their cross talk with the actin and tubulin cytoskeleton. These functions empower plectin to wield significant influence over IF network cytoarchitecture. Moreover, the unusual diversity of plectin isoforms with different N termini and a common IF-binding (C-terminal) domain enables these isoforms to specifically associate with and thereby bridge IF networks to distinct cellular structures. Here we review the evidence for IF cytoarchitecture being controlled by specific plectin isoforms in different cell systems, including fibroblasts, endothelial cells, lens fibers, lymphocytes, myocytes, keratinocytes, neurons, and astrocytes, and discuss what impact the absence of these isoforms has on IF cytoarchitecture-dependent cellular functions.


Histochemistry and Cell Biology | 2013

Plectin–intermediate filament partnership in skin, skeletal muscle, and peripheral nerve

Maria J. Castañón; Gernot Walko; Lilli Winter; Gerhard Wiche

Plectin is a large, 500-kDa, intermediate filament (IF)-associated protein. It acts as a cytoskeletal crosslinker and signaling scaffold, affecting mechanical as well as dynamic properties of the cytoskeleton. As a member of the plakin family of cytolinker proteins, plectin has a multidomain structure that is responsible for its vast binding portfolio. It not only binds to all types of IFs, actin filaments and microtubules, but also to transmembrane receptors, proteins of the subplasma membrane protein skeleton, components of the nuclear envelope, and several kinases with known roles in migration, proliferation, and energy metabolism of cells. Due to alternative splicing, plectin is expressed as various isoforms with differing N-terminal heads that dictate their differential subcellular targeting. Through specific interactions with other proteins at their target sites and their ability to bind to all types of IFs, plectin molecules provide strategically located IF anchorage sites within the cytoplasm of cells. In this review, we will present an overview of the structural features and functional properties of plectin and discuss recent progress in defining the role of its isoforms in stress-prone tissues and the implicated diseases, with focus on skin, skeletal muscle, and Schwann cells of peripheral nerve.


Journal of Clinical Investigation | 2014

Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle

Lilli Winter; Ilona Staszewska; Eva Mihailovska; Irmgard Fischer; Wolfgang H. Goldmann; Rolf Schröder; Gerhard Wiche

The ubiquitously expressed multifunctional cytolinker protein plectin is essential for muscle fiber integrity and myofiber cytoarchitecture. Patients suffering from plectinopathy-associated epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) and mice lacking plectin in skeletal muscle display pathological desmin-positive protein aggregation and misalignment of Z-disks, which are hallmarks of myofibrillar myopathies (MFMs). Here, we developed immortalized murine myoblast cell lines to examine the pathogenesis of plectinopathies at the molecular and single cell level. Plectin-deficient myotubes, derived from myoblasts, were fully functional and mirrored the pathological features of EBS-MD myofibers, including the presence of desmin-positive protein aggregates and a concurrent disarrangement of the myofibrillar apparatus. Using this cell model, we demonstrated that plectin deficiency leads to increased intermediate filament network and sarcomere dynamics, marked upregulation of HSPs, and reduced myotube resilience following mechanical stretch. Currently, no specific therapy or treatment is available to improve plectin-related or other forms of MFMs; therefore, we assessed the therapeutic potential of chemical chaperones to relieve plectinopathies. Treatment with 4-phenylbutyrate resulted in remarkable amelioration of the pathological phenotypes in plectin-deficient myotubes as well as in plectin-deficient mice. Together, these data demonstrate the biological relevance of the MFM cell model and suggest that this model has potential use for the development of therapeutic approaches for EBS-MD.


Acta Neuropathologica | 2015

The toxic effect of R350P mutant desmin in striated muscle of man and mouse

Christoph S. Clemen; Florian Stöckigt; Karl-Heinz Strucksberg; Frédéric Chevessier; Lilli Winter; Johanna Schütz; Ralf Bauer; José-Manuel Thorweihe; Daniela Wenzel; Ursula Schlötzer-Schrehardt; Volker Rasche; Pavle Krsmanovic; Hugo A. Katus; Wolfgang Rottbauer; Steffen Just; Oliver J. Müller; Oliver Friedrich; Rainer Meyer; Harald Herrmann; Jan W. Schrickel; Rolf Schröder

Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive and sporadic forms of protein aggregation myopathies and cardiomyopathies. We generated R349P desmin knock-in mice, which harbor the ortholog of the most frequently occurring human desmin missense mutation R350P. These mice develop age-dependent desmin-positive protein aggregation pathology, skeletal muscle weakness, dilated cardiomyopathy, as well as cardiac arrhythmias and conduction defects. For the first time, we report the expression level and subcellular distribution of mutant versus wild-type desmin in our mouse model as well as in skeletal muscle specimens derived from human R350P desminopathies. Furthermore, we demonstrate that the missense-mutant desmin inflicts changes of the subcellular localization and turnover of desmin itself and of direct desmin-binding partners. Our findings unveil a novel principle of pathogenesis, in which not the presence of protein aggregates, but disruption of the extrasarcomeric intermediate filament network leads to increased mechanical vulnerability of muscle fibers. These structural defects elicited at the myofiber level finally impact the entire organ and subsequently cause myopathy and cardiomyopathy.


Angewandte Chemie | 2017

An Organoruthenium Anticancer Agent Shows Unexpected Target Selectivity For Plectin

Samuel M. Meier; Dominique Kreutz; Lilli Winter; Matthias H. M. Klose; Klaudia Cseh; Tamara Weiss; Andrea Bileck; Beatrix Alte; Johanna C. Mader; Samir Jana; Annesha Chatterjee; Arindam Bhattacharyya; Michaela Hejl; Michael A. Jakupec; Petra Heffeter; Walter Berger; Christian G. Hartinger; Bernhard K. Keppler; Gerhard Wiche; Christopher Gerner

Organometallic metal(arene) anticancer agents require ligand exchange for their anticancer activity and this is generally believed to confer low selectivity for potential cellular targets. However, using an integrated proteomics-based target-response profiling approach as a potent hypothesis-generating procedure, we found an unexpected target selectivity of a ruthenium(arene) pyridinecarbothioamide (plecstatin) for plectin, a scaffold protein and cytolinker, which was validated in a plectin knock-out model in vitro. Plectin targeting shows potential as a strategy to inhibit tumor invasiveness as shown in cultured tumor spheroids while oral administration of plecstatin-1 to mice reduces tumor growth more efficiently in the invasive B16 melanoma than in the CT26 colon tumor model.


Journal of Cell Science | 2014

Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance

Sibylle Molt; John B. Bührdel; Sergiy Yakovlev; Peter Schein; Zacharias Orfanos; Gregor Kirfel; Lilli Winter; Gerhard Wiche; Peter F.M. van der Ven; Wolfgang Rottbauer; Steffen Just; Alexey M. Belkin; Dieter O. Fürst

ABSTRACT Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adaptor proteins that are mainly expressed in cardiac and skeletal muscles and which play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (also known as phosphoglucomutase-like protein 5, PGM5) as a new interaction partner of FLNc and Xin. All three proteins colocalized at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, whereas FLNc and aciculin also colocalized in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrated that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). Fluorescence recovery after photobleaching (FRAP) experiments showed that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes led to failure in myofibril assembly, alignment and membrane attachment, and a massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated, but essential, function of aciculin in myofibril formation, maintenance and remodeling.


Human Molecular Genetics | 2015

Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle

Lilli Winter; Andrey V. Kuznetsov; Michael Grimm; Anikó Zeöld; Irmgard Fischer; Gerhard Wiche

Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion–fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways.

Collaboration


Dive into the Lilli Winter's collaboration.

Top Co-Authors

Avatar

Gerhard Wiche

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Rolf Schröder

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang H. Goldmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrix Alte

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge