Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Line M. Grønning-Wang is active.

Publication


Featured researches published by Line M. Grønning-Wang.


Physiological Genomics | 2012

Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure.

Ida G. Lunde; Jan Magnus Aronsen; Heidi Kvaløy; Eirik Qvigstad; Ivar Sjaastad; Theis Tønnessen; Geir Christensen; Line M. Grønning-Wang; Cathrine R. Carlson

Reversible protein O-GlcNAc modification has emerged as an essential intracellular signaling system in several tissues, including cardiovascular pathophysiology related to diabetes and acute ischemic stress. We tested the hypothesis that cardiac O-GlcNAc signaling is altered in chronic cardiac hypertrophy and failure of different etiologies. Global protein O-GlcNAcylation and the main enzymes regulating O-GlcNAc, O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine-fructose-6-phosphate amidotransferase (GFAT) were measured by immunoblot and/or real-time RT-PCR analyses of left ventricular tissue from aortic stenosis (AS) patients and rat models of hypertension, myocardial infarction (MI), and aortic banding (AB), with and without failure. We show here that global O-GlcNAcylation was increased by 65% in AS patients, by 47% in hypertensive rats, by 81 and 58% post-AB, and 37 and 60% post-MI in hypertrophic and failing hearts, respectively (P < 0.05). Noticeably, protein O-GlcNAcylation patterns varied in hypertrophic vs. failing hearts, and the most extensive O-GlcNAcylation was observed on proteins of 20-100 kDa in size. OGT, OGA, and GFAT2 protein and/or mRNA levels were increased by pressure overload, while neither was regulated by myocardial infarction. Pharmacological inhibition of OGA decreased cardiac contractility in post-MI failing hearts, demonstrating a possible role of O-GlcNAcylation in development of chronic cardiac dysfunction. Our data support the novel concept that O-GlcNAc signaling is altered in various etiologies of cardiac hypertrophy and failure, including human aortic stenosis. This not only provides an exciting basis for discovery of new mechanisms underlying pathological cardiac remodeling but also implies protein O-GlcNAcylation as a possible new therapeutic target in heart failure.


Journal of Biological Chemistry | 2010

Nuclear Receptor Liver X Receptor Is O-GlcNAc-modified in Response to Glucose

Elin Holter Anthonisen; Lise Berven; Sverre Holm; Maria Nygard; Hilde I. Nebb; Line M. Grønning-Wang

Post-translational modification of nucleocytoplasmic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) has for the last 25 years emerged as an essential glucose-sensing mechanism. The liver X receptors (LXRs) function as nutritional sensors for cholesterol-regulating lipid metabolism, glucose homeostasis, and inflammation. LXRs are shown to be post-translationally modified by phosphorylation, acetylation, and sumoylation, affecting their target gene specificity, stability, and transactivating and transrepressional activity, respectively. In the present study, we show for the first time that LXRα and LXRβ are targets for glucose-hexosamine-derived O-GlcNAc modification in human Huh7 cells. Furthermore, we observed increased hepatic LXRα O-GlcNAcylation in vivo in refed mice and in streptozotocin-induced refed diabetic mice. Importantly, induction of LXRα O-GlcNAcylation in both mouse models was concomitant with increased expression of the lipogenic gene SREBP-1c (sterol regulatory element-binding protein 1c). Furthermore, glucose increased LXR/retinoic acid receptor-dependent activation of luciferase reporter activity driven by the mouse SREBP-1c promoter via the hexosamine biosynthetic pathway in Huh7 cells. Altogether, our results suggest that O-GlcNAcylation of LXR is a novel mechanism by which LXR acts as a glucose sensor affecting LXR-dependent gene expression, substantiating the crucial role of LXR as a nutritional sensor in lipid and glucose metabolism.


Journal of Cell Science | 2014

The molecular basis of emerin–emerin and emerin–BAF interactions

Jason M. Berk; Dan N. Simon; Clifton R. Jenkins-Houk; Jason W. Westerbeck; Line M. Grønning-Wang; Cathrine R. Carlson; Katherine L. Wilson

ABSTRACT Emerin is a conserved membrane component of nuclear lamina structure. Here, we report an advance in understanding the molecular basis of emerin function: intermolecular emerin–emerin association. There were two modes: one mediated by association of residues 170–220 in one emerin molecule to residues 170–220 in another, and the second involving residues 170–220 and 1–132. Deletion analysis showed residues 187–220 contain a positive element essential for intermolecular association in cells. By contrast, deletion of residues 168–186 inactivated a proposed negative element, required to limit or control association. Association of GFP–emerin with nuclear BAF in cells required the LEM domain (residues 1–47) and the positive element. Emerin peptide arrays revealed direct binding of residues 170–220 to residues 206–225 (the proposed positive element), residues 147–174 (particularly P153MYGRDSAYQSITHYRP169) and the LEM domain. Emerin residues 1–132 and 159–220 were each sufficient to bind lamin A or B1 tails in vitro, identifying two independent regions of molecular contact with lamins. These results, and predicted emerin intrinsic disorder, support the hypothesis that there are multiple ‘backbone’ and LEM-domain configurations in a proposed intermolecular emerin network at the nuclear envelope.


Journal of Lipid Research | 2015

Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity

Christian Bindesbøll; Qiong Fan; Rikke Nørgaard; Laura MacPherson; Hai Bin Ruan; Jing Wu; Thomas Aarskov Pedersen; Knut R. Steffensen; Xiaoyong Yang; Jason Matthews; Susanne Mandrup; Hilde I. Nebb; Line M. Grønning-Wang

Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription in response to feeding, which is believed to be mediated by insulin. We have previously shown that LXRs are targets for glucose-hexosamine-derived O-linked β-N-acetylglucosamine (O-GlcNAc) modification enhancing their ability to regulate SREBP-1c promoter activity in vitro. To elucidate insulin-independent effects of feeding on LXR-mediated lipogenic gene expression in vivo, we subjected control and streptozotocin-treated LXRα/β+/+ and LXRα/β−/− mice to a fasting-refeeding regime. We show that under hyperglycemic and hypoinsulinemic conditions, LXRs maintain their ability to upregulate the expression of glycolytic and lipogenic enzymes, including glucokinase (GK), SREBP-1c, ChREBPα, and the newly identified shorter isoform ChREBPβ. Furthermore, glucose-dependent increases in LXR/retinoid X receptor-regulated luciferase activity driven by the ChREBPα promoter was mediated, at least in part, by O-GlcNAc transferase (OGT) signaling in Huh7 cells. Moreover, we show that LXR and OGT interact and colocalize in the nucleus and that loss of LXRs profoundly reduced nuclear O-GlcNAc signaling and ChREBPα promoter binding activity in vivo. In summary, our study provides evidence that LXRs act as nutrient and glucose metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity.


Archive | 2013

The Role of Liver X Receptor in Hepatic de novo Lipogenesis and Cross-Talk with Insulin and Glucose Signaling

Line M. Grønning-Wang; Christian Bindesbøll; Hilde I. Nebb

© 2013 Gronning-Wang et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Role of Liver X Receptor in Hepatic de novo Lipogenesis and Cross-Talk with Insulin and Glucose Signaling


Biochemical Journal | 2016

TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors.

Christian Bindesbøll; Susanna Tan; Debbie Bott; Tiffany Cho; Laura Tamblyn; Laura MacPherson; Line M. Grønning-Wang; Hilde I. Nebb; Jason Matthews

Members of the poly-ADP-ribose polymerase (PARP) family catalyse the ADP-ribosylation of target proteins and are known to play important roles in many cellular processes, including DNA repair, differentiation and transcription. The majority of PARPs exhibit mono-ADP-ribosyltransferase activity rather than PARP activity; however, little is known about their biological activity. In the present study, we report that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP), mono-ADP-ribosylates and positively regulates liver X receptor α (LXRα) and LXRβ activity. Overexpression of TIPARP enhanced LXR-reporter gene activity. TIPARP knockdown or deletion reduced LXR regulated target gene expression levels in HepG2 cells and in Tiparp(-/-)mouse embryonic fibroblasts (MEFs) respectively. Deletion and mutagenesis studies showed that TIPARPs zinc-finger and catalytic domains were required to enhance LXR activity. Protein interaction studies using TIPARP and LXRα/β peptide arrays revealed that LXRs interacted with an N-terminal sequence (a.a. 209-236) of TIPARP, which also overlapped with a putative co-activator domain of TIPARP (a.a. 200-225). Immunofluorescence studies showed that TIPARP and LXRα or LXRβ co-localized in the nucleus.In vitroribosylation assays provided evidence that TIPARP mono-ADP-ribosylated both LXRα and LXRβ. Co-immunoprecipitation (co-IP) studies revealed that ADP-ribosylase macrodomain 1 (MACROD1), but not MACROD2, interacted with LXRs in a TIPARP-dependent manner. This was complemented by reporter gene studies showing that MACROD1, but not MACROD2, prevented the TIPARP-dependent increase in LXR activity. GW3965-dependent increases in hepatic Srebp1 mRNA and protein expression levels were reduced in Tiparp(-/-)mice compared with Tiparp(+/+)mice. Taken together, these data identify a new mechanism of LXR regulation that involves TIPARP, ADP-ribosylation and MACROD1.


Immunity, inflammation and disease | 2015

Serglycin is part of the secretory repertoire of LPS-activated monocytes

Ingrid Benedicte Moss Kolseth; Trine M. Reine; Tram Thu Vuong; Astri Jeanette Meen; Qiong Fan; Trond Jenssen; Line M. Grønning-Wang; Svein Olav Kolset

Monocytes play multiple roles in the immune system, and are active in both acute and chronic diseases. Patients exposed to bacterial infections depend on monocytes in defense reactions, but excessive immune reactions may also cause morbidity through systemic inflammatory responses. Few studies have addressed the importance of proteoglycans, and in particular, the hematopoietic serglycin, in such monocyte immune reactions. Adherent primary monocytes were cultured in absence and presence of LPS. Media were analyzed by ELISA for detection of serglycin. Lysed cell fractions were used to determine the mRNA level of serglycin. Monocytes were also cultured on chamber slides to investigate if serglycin could be detected intracellularly by immunocytochemistry. Monocytes secreted serglycin, and LPS‐stimulation increased the secretion. Secretion of inflammatory cytokines increased to a larger extent than serglycin. mRNA levels of serglycin were also increased, suggesting both increased expression and secretion. Immunocytochemistry revealed the presence of serglycin in intracellular vesicles, many destined for secretion. Serglycin containing vesicles increased in number and size when the cells were exposed to LPS. Intracellular vesicle localization and secretion of the proteoglycan serglycin is shown for the first time in primary human monocytes. Monocyte activation by LPS increased the expression and secretion of serglycin, suggesting roles for serglycin in inflammatory processes.


Cells | 2018

OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A

Dan N. Simon; Amanda Wriston; Qiong Fan; Jeffrey Shabanowitz; Alyssa Florwick; Tejas Dharmaraj; Sherket B. Peterson; Yosef Gruenbaum; Cathrine R. Carlson; Line M. Grønning-Wang; Donald F. Hunt; Katherine L. Wilson

The LMNA gene encodes lamins A and C with key roles in nuclear structure, signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases (‘laminopathies’). Lamins A and C are identical for their first 566 residues. However, they form separate filaments in vivo, with apparently distinct roles. We report that lamin A is β-O-linked N-acetylglucosamine-(O-GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver. In vitro assays with purified O-GlcNAc transferase (OGT) enzyme showed robust O-GlcNAcylation of recombinant mature lamin A tails (residues 385–646), with no detectable modification of lamin B1, lamin C, or ‘progerin’ (Δ50) tails. Using mass spectrometry, we identified 11 O-GlcNAc sites in a ‘sweet spot’ unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O-GlcNAc-modified at seven sites. By contrast, O-GlcNAcylation was undetectable on tails bearing deletion Δ50, which causes Hutchinson–Gilford progeria syndrome, and greatly reduced by deletion Δ35. We conclude that residues deleted in progeria are required for substrate recognition and/or modification by OGT in vitro. Interestingly, deletion Δ35, which does not remove the majority of identified O-GlcNAc sites, does remove potential OGT-association motifs (lamin A residues 622–625 and 639–645) homologous to that in mouse Tet1. These biochemical results are significant because they identify a novel molecular pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might cause OGT to misregulate wildtype lamin A.


Nutrients | 2017

LXRα Regulates Hepatic ChREBPα Activity and Lipogenesis upon Glucose, but Not Fructose Feeding in Mice

Qiong Fan; Rikke Nørgaard; Christian Bindesbøll; Christin Lucas; Knut Tomas Dalen; Eshrat Babaie; Harri Itkonen; Jason Matthews; Hilde I. Nebb; Line M. Grønning-Wang

Liver X receptors (LXRα/β) and carbohydrate response element-binding proteins (ChREBPα/β) are key players in the transcriptional control of hepatic de novo lipogenesis. LXRα/β double knockout (LXRα−/−/β−/−) mice have reduced feeding-induced nuclear O-linked N-acetylglucosamine (O-GlcNAc) signaling, ChREBPα activity, and lipogenic gene expression in livers, suggesting important roles for LXRs in linking hepatic glucose utilization to lipid synthesis. However, the role of LXRs in fructose-induced ChREBP activation and lipogenesis is currently unknown. In this study, we studied the effects of high fructose or high glucose feeding on hepatic carbohydrate metabolism and lipogenic gene expression in livers from fasted (24 h) and fasted-refed (12 h) wild type and LXRα knockout (LXRα−/−) mice. Hepatic lipogenic gene expression was reduced in glucose fed, but not fructose fed LXRα−/− mice. This was associated with lower expression of liver pyruvate-kinase (L-pk) and Chrebpβ, indicating reduced ChREBPα activity in glucose fed, but not fructose fed mice. Interestingly, ChREBP binding to the L-pk promoter was increased in fructose fed LXRα−/− mice, concomitant with increased glucose-6-phosphatase (G6pc) expression and O-GlcNAc modified LXRβ, suggesting a role for LXRβ in regulating ChREBPα activity upon fructose feeding. In conclusion, we propose that LXRα is an important regulator of hepatic lipogenesis and ChREBPα activity upon glucose, but not fructose feeding in mice.


Receptors and clinical investigation | 2015

Liver X receptors connect nuclear O-GlcNAc signaling to hepatic glucose utilization and lipogenesis

Christian Bindesbøll; Line M. Grønning-Wang

Collaboration


Dive into the Line M. Grønning-Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan N. Simon

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Katherine L. Wilson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge