Linjiang Chen
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Linjiang Chen.
Nature Materials | 2014
Linjiang Chen; Paul S. Reiss; Samantha Y. Chong; Daniel Holden; Kim E. Jelfs; Tom Hasell; Marc A. Little; Adam Kewley; Michael E. Briggs; Andrew Stephenson; K. Mark Thomas; Jayne A. Armstrong; Jon G. Bell; José Busto; Raymond Noel; Jian Liu; Denis M. Strachan; Praveen K. Thallapally; Andrew I. Cooper
The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation.
Journal of the American Chemical Society | 2013
Linjiang Chen; John P. S. Mowat; David Fairen-Jimenez; Carole A. Morrison; Stephen P. Thompson; Paul A. Wright; Tina Düren
Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO2 at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2(1)/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.
Nature | 2017
Angeles Pulido; Linjiang Chen; Tomasz Kaczorowski; Daniel Holden; Marc A. Little; Samantha Y. Chong; Benjamin J. Slater; David P. McMahon; Baltasar Bonillo; Chloe J. Stackhouse; Andrew Stephenson; Christopher M. Kane; Rob Clowes; Tom Hasell; Andrew I. Cooper; Graeme M. Day
Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal–organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy–structure–function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy–structure–function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.
Journal of the American Chemical Society | 2016
Tom Hasell; Marcin Miklitz; Andrew Stephenson; Marc A. Little; Samantha Y. Chong; Rob Clowes; Linjiang Chen; Daniel Holden; Gareth A. Tribello; Kim E. Jelfs; Andrew I. Cooper
A series of porous organic cages is examined for the selective adsorption of sulfur hexafluoride (SF6) over nitrogen. Despite lacking any metal sites, a porous cage, CC3, shows the highest SF6/N2 selectivity reported for any material at ambient temperature and pressure, which translates to real separations in a gas breakthrough column. The SF6 uptake of these materials is considerably higher than would be expected from the static pore structures. The location of SF6 within these materials is elucidated by X-ray crystallography, and it is shown that cooperative diffusion and structural rearrangements in these molecular crystals can rationalize their superior SF6/N2 selectivity.
Journal of the American Chemical Society | 2017
Kecheng Jie; Yujuan Zhou; Marc A. Little; Satyanarayana Bonakala; Samantha Y. Chong; Andrew Stephenson; Linjiang Chen; Feihe Huang; Andrew I. Cooper
The separation of styrene (St) and ethylbenzene (EB) mixtures is important in the chemical industry. Here, we explore the St and EB adsorption selectivity of two pillar-shaped macrocyclic pillar[n]arenes (EtP5 and EtP6; n = 5 and 6). Both crystalline and amorphous EtP6 can capture St from a St-EB mixture with remarkably high selectivity. We show that EtP6 can be used to separate St from a 50:50 v/v St:EB mixture, yielding in a single adsorption cycle St with a purity of >99%. Single-crystal structures, powder X-ray diffraction patterns, and molecular simulations all suggest that this selectivity is due to a guest-induced structural change in EtP6 rather than a simple cavity/pore size effect. This restructuring means that the material “self-heals” upon each recrystallization, and St separation can be carried out over multiple cycles with no loss of performance.
Nature Chemistry | 2015
Marc A. Little; Michael E. Briggs; James T. A. Jones; Marc Schmidtmann; Tom Hasell; Samantha Y. Chong; Kim E. Jelfs; Linjiang Chen; Andrew I. Cooper
Stable guest-free porous molecular crystals are uncommon. By contrast, organic molecular crystals with guest-occupied cavities are frequently observed, but these cavities tend to be unstable and collapse on removal of the guests—this feature has been referred to as ‘virtual porosity’. Here, we show how we have trapped the virtual porosity in an unstable low-density organic molecular crystal by introducing a second molecule that matches the size and shape of the unstable voids. We call this strategy ‘retro-engineering’ because it parallels organic retrosynthetic analysis, and it allows the metastable two-dimensional hexagonal pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike the crystal with virtual porosity, the cocrystal material remains single crystalline and porous after removal of guests by heating. Organic molecular crystals with guest-occupied cavities are often observed, but the cavities tend to collapse when the guests are removed. Now, the porous domain of a crystalline solvate has been stabilized by formation of a cocrystal with a second molecule whose size and shape matches those of the unstable voids.
Nature Communications | 2016
Linjiang Chen; Scott W. Lewis; Samantha Y. Chong; Marc A. Little; Tom Hasell; Iain M. Aldous; Craig M. Brown; Martin W. Smith; Carole A. Morrison; Laurence J. Hardwick; Andrew I. Cooper
Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10−3 S cm−1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores.
Science Advances | 2017
Shaolei Wang; Chengxin Zhang; Yu Shu; Shulan Jiang; Qi Xia; Linjiang Chen; Shangbin Jin; Irshad Hussain; Andrew I. Cooper; Bien Tan
Novel layered microporous polymers with high surface area and gas storage were prepared by low-cost solvent knitting method. Two-dimensional (2D) nanomaterials, especially 2D organic nanomaterials with unprecedentedly diverse and controlled structure, have attracted decent scientific interest. Among the preparation strategies, the top-down approach is one of the considered low-cost and scalable strategies to obtain 2D organic nanomaterials. However, some factors of their layered counterparts limited the development and potential applications of 2D organic nanomaterials, such as type, stability, and strict synthetic conditions of layered counterparts. We report a class of layered solvent knitting hyper-cross-linked microporous polymers (SHCPs) prepared by improving Friedel-Crafts reaction and using dichloroalkane as an economical solvent, stable electrophilic reagent, and external cross-linker at low temperature, which could be used as layered counterparts to obtain previously unknown 2D SHCP nanosheets by method of ultrasonic-assisted solvent exfoliation. This efficient and low-cost strategy can produce previously unreported microporous organic polymers with layered structure and high surface area and gas storage capacity. The pore structure and surface area of these polymers can be controlled by tuning the chain length of the solvent, the molar ratio of AlCl3, and the size of monomers. Furthermore, we successfully obtain an unprecedentedly high–surface area HCP material (3002 m2 g−1), which shows decent gas storage capacity (4.82 mmol g−1 at 273 K and 1.00 bar for CO2; 12.40 mmol g−1 at 77.3 K and 1.13 bar for H2). This finding provides an opportunity for breaking the constraint of former knitting methods and opening up avenues for the design and synthesis of previously unknown layered HCP materials.
ACS central science | 2017
Anna G. Slater; Paul S. Reiss; Angeles Pulido; Marc A. Little; Daniel Holden; Linjiang Chen; Samantha Y. Chong; Ben Alston; Rob Clowes; Maciej Haranczyk; Michael E. Briggs; Tom Hasell; Graeme M. Day; Andrew I. Cooper
The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal–organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groups into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure–energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy–structure–function maps.
Angewandte Chemie | 2017
Shan Jiang; Qilei Song; Alan Massey; Samantha Y. Chong; Linjiang Chen; Shijing Sun; Tom Hasell; Rasmita Raval; Easan Sivaniah; Anthony K. Cheetham; Andrew I. Cooper
Abstract The formation of two‐dimensional (2D) oriented porous organic cage crystals (consisting of imine‐based tetrahedral molecules) on various substrates (such as silicon wafers and glass) by solution‐processing is reported. Insight into the crystallinity, preferred orientation, and cage crystal growth was obtained by experimental and computational techniques. For the first time, structural defects in porous molecular materials were observed directly and the defect concentration could be correlated with crystal growth rate. These oriented crystals suggest potential for future applications, such as solution‐processable molecular crystalline 2D membranes for molecular separations.