Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa D. Belmont is active.

Publication


Featured researches published by Lisa D. Belmont.


Nature | 2011

Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7

Ingrid E. Wertz; Saritha Kusam; Cynthia Lam; Toru Okamoto; Wendy Sandoval; Daniel J. Anderson; Elizabeth Helgason; James A. Ernst; Mike Eby; Jinfeng Liu; Lisa D. Belmont; Joshua S. Kaminker; Karen O’Rourke; Kanan Pujara; Pawan Bir Kohli; Adam R. Johnson; Mark L. Chiu; Jennie R. Lill; Peter K. Jackson; Wayne J. Fairbrother; Somasekar Seshagiri; Mary J. C. Ludlam; Kevin G. Leong; Erin C. Dueber; Heather Maecker; David C. S. Huang; Vishva M. Dixit

Microtubules have pivotal roles in fundamental cellular processes and are targets of antitubulin chemotherapeutics. Microtubule-targeted agents such as Taxol and vincristine are prescribed widely for various malignancies, including ovarian and breast adenocarcinomas, non-small-cell lung cancer, leukaemias and lymphomas. These agents arrest cells in mitosis and subsequently induce cell death through poorly defined mechanisms. The strategies that resistant tumour cells use to evade death induced by antitubulin agents are also unclear. Here we show that the pro-survival protein MCL1 (ref. 3) is a crucial regulator of apoptosis triggered by antitubulin chemotherapeutics. During mitotic arrest, MCL1 protein levels decline markedly, through a post-translational mechanism, potentiating cell death. Phosphorylation of MCL1 directs its interaction with the tumour-suppressor protein FBW7, which is the substrate-binding component of a ubiquitin ligase complex. The polyubiquitylation of MCL1 then targets it for proteasomal degradation. The degradation of MCL1 was blocked in patient-derived tumour cells that lacked FBW7 or had loss-of-function mutations in FBW7, conferring resistance to antitubulin agents and promoting chemotherapeutic-induced polyploidy. Additionally, primary tumour samples were enriched for FBW7 inactivation and elevated MCL1 levels, underscoring the prominent roles of these proteins in oncogenesis. Our findings suggest that profiling the FBW7 and MCL1 status of tumours, in terms of protein levels, messenger RNA levels and genetic status, could be useful to predict the response of patients to antitubulin chemotherapeutics.


Science Translational Medicine | 2015

Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy

Joel D. Leverson; Darren C. Phillips; Michael J. Mitten; Erwin R. Boghaert; Stephen K. Tahir; Lisa D. Belmont; Paul Nimmer; Yu Xiao; Xiaoju Max Ma; Kym N. Lowes; Peter Kovar; Jun Chen; Sha Jin; Morey L. Smith; John Xue; Haichao Zhang; Anatol Oleksijew; Terrance J. Magoc; Kedar S. Vaidya; Daniel H. Albert; Jacqueline M. Tarrant; Nghi La; Le Wang; Zhi-Fu Tao; Michael D. Wendt; Deepak Sampath; Saul H. Rosenberg; Chris Tse; David C. S. Huang; Wayne J. Fairbrother

Selective inhibition of BCL-XL synergizes with docetaxel to inhibit the growth of solid tumors but does not inhibit granulopoiesis. A more refined antitumor strategy The BCL-2 family is a group of related proteins that regulate apoptosis in a variety of ways. The success of anticancer treatments often hinges on the ability to induce cancer cell death by apoptosis. As a result, there has been a great deal of interest in developing drugs that can inhibit the antiapoptotic members of the BCL-2 pathway. Unfortunately, some of these drugs are also associated with dose-limiting hematologic toxicities, such as neutropenia. Now, Leverson et al. have used a toolkit of BCL-2 family inhibitors with different specificities to show that specifically inhibiting BCL-XL (one member of this protein family) is effective for killing tumors, but without the common side effects seen with less selective drugs. The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2–selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL–selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL–selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics.


Blood | 2012

Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells.

Delphine Mérino; Seong Lin Khaw; Stephan P. Glaser; Daniel J. Anderson; Lisa D. Belmont; Chihunt Wong; Peng Yue; Mikara Robati; Belinda Phipson; W D Fairlie; Erinna F. Lee; Kirsteen J. Campbell; Cassandra J. Vandenberg; Suzanne Cory; Andrew W. Roberts; Mary J. C. Ludlam; David C. S. Huang

The BH3-mimetic ABT-737 and an orally bioavailable compound of the same class, navitoclax (ABT-263), have shown promising antitumor efficacy in preclinical and early clinical studies. Although both drugs avidly bind Bcl-2, Bcl-x(L), and Bcl-w in vitro, we find that Bcl-2 is the critical target in vivo, suggesting that patients with tumors overexpressing Bcl-2 will probably benefit. In human non-Hodgkin lymphomas, high expression of Bcl-2 but not Bcl-x(L) predicted sensitivity to ABT-263. Moreover, we show that increasing Bcl-2 sensitized normal and transformed lymphoid cells to ABT-737 by elevating proapoptotic Bim. In striking contrast, increasing Bcl-x(L) or Bcl-w conferred robust resistance to ABT-737, despite also increasing Bim. Cell-based protein redistribution assays unexpectedly revealed that ABT-737 disrupts Bcl-2/Bim complexes more readily than Bcl-x(L)/Bim or Bcl-w/Bim complexes. These results have profound implications for how BH3-mimetics induce apoptosis and how the use of these compounds can be optimized for treating lymphoid malignancies.


Clinical Cancer Research | 2011

Navitoclax Enhances the Efficacy of Taxanes in Non–Small Cell Lung Cancer Models

Nguyen Tan; Mehnaz Malek; Jiping Zha; Peng Yue; Robert Kassees; Leanne Berry; Wayne J. Fairbrother; Deepak Sampath; Lisa D. Belmont

Purpose: To explore the potential of navitoclax in combination with taxane-based chemotherapy in the treatment of non–small cell lung cancer (NSCLC) by defining mechanism of synergy and identifying correlative biomarkers. Experimental Design: We treated a panel of NSCLC lines with a dose matrix of paclitaxel and navitoclax (formerly ABT-263), an inhibitor of Bcl-2, Bcl-xL, and Bcl-w (1), and evaluated synergy. We next used time-lapse microscopy to explore mechanism of synergy. Finally, we developed an immunohistochemical assay and assessed prevalence of Bcl-xL in NSCLC tumor tissues. Results: All cell lines exhibit greater than additive response to the combination of navitoclax and a taxane. These results were extended to mouse xenograft tumor models, in which the combination is more efficacious than either single-agent docetaxel or navitoclax. Addition of navitoclax to paclitaxel decreases the time from mitotic entry to cell death and changes cell fate from mitotic slippage to death during mitotic arrest. The relative levels of Bcl-xL and Mcl-1 correlate with the extent of synergy, suggesting that cancers with elevated levels of Bcl-xL will be relatively resistant to taxane-based therapy but could benefit from the addition of navitoclax to taxane treatment. Finally, a significant percentage of NSCLC patient samples exhibit relatively high Bcl-xL levels. Conclusions: The addition of navitoclax to taxane-based chemotherapy in NSCLC has the potential to increase efficacy, particularly in patients whose tumors express high levels of Bcl-xL. Clin Cancer Res; 17(6); 1394–404. ©2011 AACR.


Cancer Research | 2014

AXL Inhibition Sensitizes Mesenchymal Cancer Cells to Antimitotic Drugs

Catherine Wilson; Xiaofen Ye; Thinh Q. Pham; Eva Lin; Sara M. Chan; Erin McNamara; Richard M. Neve; Lisa D. Belmont; Hartmut Koeppen; Robert L. Yauch; Avi Ashkenazi; Jeffrey Settleman

Molecularly targeted drug therapies have revolutionized cancer treatment; however, resistance remains a major limitation to their overall efficacy. Epithelial-to-mesenchymal transition (EMT) has been linked to acquired resistance to tyrosine kinase inhibitors (TKI), independent of mutational resistance mechanisms. AXL is a receptor tyrosine kinase associated with EMT that has been implicated in drug resistance and has emerged as a candidate therapeutic target. Across 643 human cancer cell lines that were analyzed, elevated AXL was strongly associated with a mesenchymal phenotype, particularly in triple-negative breast cancer and non-small cell lung cancer. In an unbiased screen of small-molecule inhibitors of cancer-relevant processes, we discovered that AXL inhibition was specifically synergistic with antimitotic agents in killing cancer cells that had undergone EMT and demonstrated associated TKI resistance. However, we did not find that AXL inhibition alone could overcome acquired resistance to EGFR TKIs in the EMT setting, as previously reported. These findings reveal a novel cotreatment strategy for tumors displaying mesenchymal features that otherwise render them treatment refractory.


Clinical Cancer Research | 2012

GDC-0941, a Novel Class I Selective PI3K Inhibitor, Enhances the Efficacy of Docetaxel in Human Breast Cancer Models by Increasing Cell Death In Vitro and In Vivo

Jeffrey Wallin; Jane Guan; Wei Wei Prior; Leslie Lee; Leanne Berry; Lisa D. Belmont; Hartmut Koeppen; Marcia Belvin; Lori Friedman; Deepak Sampath

Purpose: Docetaxel is a front-line standard-of-care chemotherapeutic drug for the treatment of breast cancer. Phosphoinositide 3-kinases (PI3K) are lipid kinases that regulate breast tumor cell growth, migration, and survival. The current study was intended to determine whether GDC-0941, an orally bioavailable class I selective PI3K inhibitor, enhances the antitumor activity of docetaxel in human breast cancer models in vitro and in vivo. Experimental Design: A panel of 25 breast tumor cell lines representing HER2+, luminal, and basal subtypes were treated with GDC-0941, docetaxel, or the combination of both drugs and assayed for cellular viability, modulation of PI3K pathway markers, and apoptosis induction. Drug combination effects on cellular viability were also assessed in nontransformed MCF10A human mammary epithelial cells. Human xenografts of breast cancer cell lines and patient-derived tumors were used to assess efficacy of GDC-0941 and docetaxel in vivo. Results: Combination of GDC-0941 and docetaxel decreased the cellular viability of breast tumor cell lines in vitro but to variable degrees of drug synergy. Compared with nontransformed MCF10A cells, the addition of both drugs resulted in stronger synergistic effects in a subset of tumor cell lines that were not predicted by breast cancer subtype. In xenograft models, GDC-0941 enhanced the antitumor activity of docetaxel with maximum combination efficacy observed within 1 hour of administering both drugs. GDC-0941 increased the rate of apoptosis in cells arrested in mitosis upon cotreatment with docetaxel. Conclusion: GDC-0941 augments the efficacy of docetaxel by increasing drug-induced apoptosis in breast cancer models. Clin Cancer Res; 18(14); 3901–11. ©2012 AACR.


Molecular Cancer Therapeutics | 2012

Navitoclax (ABT-263) reduces Bcl-x(L)-mediated chemoresistance in ovarian cancer models.

Maureen Wong; Nguyen Tan; Jiping Zha; Franklin Peale; Peng Yue; Wayne J. Fairbrother; Lisa D. Belmont

To examine the potential of combining Bcl-2 family inhibitors with chemotherapy in ovarian cancer, we evaluated a panel of 27 ovarian cancer cell lines for response to the combination of navitoclax (formerly ABT-263) and paclitaxel or gemcitabine. The majority of cell lines exhibited a greater than additive response to either combination, as determined by the Bliss independence model, and more than 50% of the ovarian cell lines exhibited strong synergy for the navitoclax/paclitaxel combination. To identify biomarkers for tumors likely to respond to this combination, we evaluated the protein levels of intrinsic apoptosis pathway components. Bcl-xL seems necessary, but not sufficient, for navitoclax/paclitaxel synergy in vitro, suggesting that exclusion of patients whose tumors have low or undetectable Bcl-xL would enrich for patients responsive to the combination. We evaluated Bcl-xL levels in ovarian cancer tumor tissue from 40 patients (20 taxane responsive and 20 with poor response to taxane) and found that patients with high Bcl-xL were less sensitive to taxane treatment (10 of 12) Bcl-xL positive patients, P = 0.014). These data support the use of navitoclax in combination with taxane-based therapy in ovarian cancer patients with high levels of Bcl-xL. Mol Cancer Ther; 11(4); 1026–35. ©2012 AACR.


Molecular Cancer Therapeutics | 2016

Expression Profile of BCL-2, BCL-XL, and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective Antagonist Venetoclax in Multiple Myeloma Models

Elizabeth Punnoose; Joel D. Leverson; Franklin Peale; Erwin R. Boghaert; Lisa D. Belmont; Nguyen Tan; Amy Young; Michael J. Mitten; Ellen Ingalla; Walter C. Darbonne; Anatol Oleksijew; Paul Tapang; Peng Yue; Jason Oeh; Leslie Lee; Sophie Maïga; Wayne J. Fairbrother; Martine Amiot; Andrew J. Souers; Deepak Sampath

BCL-2 family proteins dictate survival of human multiple myeloma cells, making them attractive drug targets. Indeed, multiple myeloma cells are sensitive to antagonists that selectively target prosurvival proteins such as BCL-2/BCL-XL (ABT-737 and ABT-263/navitoclax) or BCL-2 only (ABT-199/GDC-0199/venetoclax). Resistance to these three drugs is mediated by expression of MCL-1. However, given the selectivity profile of venetoclax it is unclear whether coexpression of BCL-XL also affects antitumor responses to venetoclax in multiple myeloma. In multiple myeloma cell lines (n = 21), BCL-2 is expressed but sensitivity to venetoclax correlated with high BCL-2 and low BCL-XL or MCL-1 expression. Multiple myeloma cells that coexpress BCL-2 and BCL-XL were resistant to venetoclax but sensitive to a BCL-XL–selective inhibitor (A-1155463). Multiple myeloma xenograft models that coexpressed BCL-XL or MCL-1 with BCL-2 were also resistant to venetoclax. Resistance to venetoclax was mitigated by cotreatment with bortezomib in xenografts that coexpressed BCL-2 and MCL-1 due to upregulation of NOXA, a proapoptotic factor that neutralizes MCL-1. In contrast, xenografts that expressed BCL-XL, MCL-1, and BCL-2 were more sensitive to the combination of bortezomib with a BCL-XL selective inhibitor (A-1331852) but not with venetoclax cotreatment when compared with monotherapies. IHC of multiple myeloma patient bone marrow biopsies and aspirates (n = 95) revealed high levels of BCL-2 and BCL-XL in 62% and 43% of evaluable samples, respectively, while 34% were characterized as BCL-2High/BCL-XLLow. In addition to MCL-1, our data suggest that BCL-XL may also be a potential resistance factor to venetoclax monotherapy and in combination with bortezomib. Mol Cancer Ther; 15(5); 1132–44. ©2016 AACR.


Cell | 2011

The STARD9/Kif16a Kinesin Associates with Mitotic Microtubules and Regulates Spindle Pole Assembly

Jorge Z. Torres; Matthew K. Summers; David Peterson; Matthew J. Brauer; James Lee; Silvia Senese; Ankur A. Gholkar; Yu-Chen Lo; Xingye Lei; Kenneth Jung; David C. Anderson; David P. Davis; Lisa D. Belmont; Peter K. Jackson

During cell division, cells form the microtubule-based mitotic spindle, a highly specialized and dynamic structure that mediates proper chromosome transmission to daughter cells. Cancer cells can show perturbed mitotic spindles and an approach in cancer treatment has been to trigger cell killing by targeting microtubule dynamics or spindle assembly. To identify and characterize proteins necessary for spindle assembly, and potential antimitotic targets, we performed a proteomic and genetic analysis of 592 mitotic microtubule copurifying proteins (MMCPs). Screening for regulators that affect both mitosis and apoptosis, we report the identification and characterization of STARD9, a kinesin-3 family member, which localizes to centrosomes and stabilizes the pericentriolar material (PCM). STARD9-depleted cells have fragmented PCM, form multipolar spindles, activate the spindle assembly checkpoint (SAC), arrest in mitosis, and undergo apoptosis. Interestingly, STARD9-depletion synergizes with the chemotherapeutic agent taxol to increase mitotic death, demonstrating that STARD9 is a mitotic kinesin and a potential antimitotic target.


Molecular Cancer Therapeutics | 2013

Bcl-2/Bcl-xL Inhibition Increases the Efficacy of MEK Inhibition Alone and in Combination with PI3 Kinase Inhibition in Lung and Pancreatic Tumor Models

Nguyen Tan; Maureen Wong; Michelle Nannini; Rebecca Hong; Leslie Lee; Stephen Price; Karen Williams; Pierre Pascal Savy; Peng Yue; Deepak Sampath; Jeffrey Settleman; Wayne J. Fairbrother; Lisa D. Belmont

Although mitogen-activated protein (MAP)–extracellular signal-regulated kinase (ERK) kinase (MEK) inhibition is predicted to cause cell death by stabilization of the proapoptotic BH3-only protein BIM, the induction of apoptosis is often modest. To determine if addition of a Bcl-2 family inhibitor could increase the efficacy of a MEK inhibitor, we evaluated a panel of 53 non–small cell lung cancer and pancreatic cancer cell lines with the combination of navitoclax (ABT-263), a Bcl-2/Bcl-xL (BCL2/BCL2L1) antagonist, and a novel MAP kinase (MEK) inhibitor, G-963. The combination is synergistic in the majority of lines, with an enrichment of cell lines harboring KRAS mutations in the high synergy group. Cells exposed to G-963 arrest in G1 and a small fraction undergo apoptosis. The addition of navitoclax to G-963 does not alter the kinetics of cell-cycle arrest, but greatly increases the percentage of cells that undergo apoptosis. The G-963/navitoclax combination was more effective than either single agent in the KRAS mutant H2122 xenograft model; BIM stabilization and PARP cleavage were observed in tumors, consistent with the mechanism of action observed in cell culture. Addition of the phosphatidylinositol 3-kinase (PI3K, PIK3CA) inhibitor GDC-0941 to this treatment combination increases cell killing compared with double- or single-agent treatment. Taken together, these data suggest the efficacy of agents that target the MAPK and PI3K pathways can be improved by combination with a Bcl-2 family inhibitor. Mol Cancer Ther; 12(6); 853–64. ©2013 AACR.

Collaboration


Dive into the Lisa D. Belmont's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge