Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa D. Brooks is active.

Publication


Featured researches published by Lisa D. Brooks.


Nature | 2010

Integrating common and rare genetic variation in diverse human populations.

David Altshuler; Richard A. Gibbs; Leena Peltonen; Emmanouil T. Dermitzakis; Stephen F. Schaffner; Fuli Yu; Penelope E. Bonnen; de Bakker Pi; Panos Deloukas; Stacey Gabriel; R. Gwilliam; Sarah Hunt; Michael Inouye; Xiaoming Jia; Aarno Palotie; Melissa Parkin; Pamela Whittaker; Kyle Chang; Alicia Hawes; Lora Lewis; Yanru Ren; David A. Wheeler; Donna M. Muzny; C. Barnes; Katayoon Darvishi; Joshua M. Korn; Kristiansson K; Cin-Ty A. Lee; McCarrol Sa; James Nemesh

Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called ‘HapMap 3’, includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of ≤5%, and demonstrated the feasibility of imputing newly discovered CNPs and SNPs. This expanded public resource of genome variants in global populations supports deeper interrogation of genomic variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.


Nature | 2007

Replicating genotype-phenotype associations.

Stephen J. Chanock; Teri A. Manolio; Michael Boehnke; Eric Boerwinkle; David J. Hunter; Gilles Thomas; Joel N. Hirschhorn; Gonçalo R. Abecasis; David Altshuler; Joan E. Bailey-Wilson; Lisa D. Brooks; Lon R. Cardon; Mark J. Daly; Peter Donnelly; Joseph F. Fraumeni; Nelson B. Freimer; Daniela S. Gerhard; Chris Gunter; Alan E. Guttmacher; Mark S. Guyer; Emily L. Harris; Josephine Hoh; Robert N. Hoover; C. Augustine Kong; Kathleen R. Merikangas; Cynthia C. Morton; Lyle J. Palmer; Elizabeth G. Phimister; John P. Rice; Jerry Roberts

What constitutes replication of a genotype–phenotype association, and how best can it be achieved?


Journal of Clinical Investigation | 2008

A HapMap harvest of insights into the genetics of common disease

Teri A. Manolio; Lisa D. Brooks; Francis S. Collins

The International HapMap Project was designed to create a genome-wide database of patterns of human genetic variation, with the expectation that these patterns would be useful for genetic association studies of common diseases. This expectation has been amply fulfilled with just the initial output of genome-wide association studies, identifying nearly 100 loci for nearly 40 common diseases and traits. These associations provided new insights into pathophysiology, suggesting previously unsuspected etiologic pathways for common diseases that will be of use in identifying new therapeutic targets and developing targeted interventions based on genetically defined risk. In addition, HapMap-based discoveries have shed new light on the impact of evolutionary pressures on the human genome, suggesting multiple loci important for adapting to disease-causing pathogens and new environments. In this review we examine the origin, development, and current status of the HapMap; its prospects for continued evolution; and its current and potential future impact on biomedical science.


The New England Journal of Medicine | 2015

ClinGen — The Clinical Genome Resource

Heidi L. Rehm; Jonathan S. Berg; Lisa D. Brooks; Carlos Bustamante; James P. Evans; Melissa J. Landrum; David H. Ledbetter; Donna Maglott; Christa Lese Martin; Robert L. Nussbaum; Sharon E. Plon; Erin M. Ramos; Stephen T. Sherry; Michael S. Watson

On autopsy, a patient is found to have hypertrophic cardiomyopathy. The patient’s family pursues genetic testing that shows a “likely pathogenic” variant for the condition on the basis of a study in an original research publication. Given the dominant inheritance of the condition and the risk of sudden cardiac death, other family members are tested for the genetic variant to determine their risk. Several family members test negative and are told that they are not at risk for hypertrophic cardiomyopathy and sudden cardiac death, and those who test positive are told that they need to be regularly monitored for cardiomyopathy on echocardiography. Five years later, during a routine clinic visit of one of the genotype-positive family members, the cardiologist queries a database for current knowledge on the genetic variant and discovers that the variant is now interpreted as “likely benign” by another laboratory that uses more recently derived population-frequency data. A newly available testing panel for additional genes that are implicated in hypertrophic cardiomyopathy is initiated on an affected family member, and a different variant is found that is determined to be pathogenic. Family members are retested, and one member who previously tested negative is now found to be positive for this new variant. An immediate clinical workup detects evidence of cardiomyopathy, and an intracardiac defibrillator is implanted to reduce the risk of sudden cardiac death.


Nature Genetics | 2007

New models of collaboration in genome-wide association studies: the Genetic Association Information Network.

Teri A. Manolio; Laura Lyman Rodriguez; Lisa D. Brooks; Gonçalo R. Abecasis; Dennis G. Ballinger; Mark J. Daly; Peter Donnelly; Stephen V. Faraone; Kelly A. Frazer; Stacey Gabriel; Pablo V. Gejman; Alan E. Guttmacher; Emily L. Harris; Thomas R. Insel; John R. Kelsoe; Eric S. Lander; Norma McCowin; Matthew D. Mailman; Elizabeth G. Nabel; James Ostell; Elizabeth W. Pugh; Stephen T. Sherry; Patrick F. Sullivan; John F. Thompson; James H. Warram; David Wholley; Patrice M. Milos; Francis S. Collins

The Genetic Association Information Network (GAIN) is a public-private partnership established to investigate the genetic basis of common diseases through a series of collaborative genome-wide association studies. GAIN has used new approaches for project selection, data deposition and distribution, collaborative analysis, publication and protection from premature intellectual property claims. These demonstrate a new commitment to shared scientific knowledge that should facilitate rapid advances in understanding the genetics of complex diseases.


Nature | 2007

Completing the map of human genetic variation

Evan E. Eichler; Deborah A. Nickerson; David Altshuler; Anne M. Bowcock; Lisa D. Brooks; Nigel P. Carter; Deanna M. Church; Adam Felsenfeld; Mark S. Guyer; Charles Lee; James R. Lupski; James C. Mullikin; Jonathan K. Pritchard; Jonathan Sebat; Stephen T. Sherry; Douglas H. Smith; David Valle; Robert H. Waterston

Large-scale studies of human genetic variation have focused largely on understanding the pattern and nature of single-nucleotide differences within the human genome. Recent studies that have identified larger polymorphisms, such as insertions, deletions and inversions, emphasize the value of investing in more comprehensive and systematic studies of human structural genetic variation. We describe a community resource project recently launched by the National Human Genome Research Institute (NHGRI) to sequence large-insert clones from many individuals, systematically discovering and resolving these complex variants at the DNA sequence level. The project includes the discovery of variants through development of clone resources, sequence resolution of variants, and accurate typing of variants in individuals of African, European or Asian ancestry. Sequence resolution of both single-nucleotide and larger-scale genomic variants will improve our picture of natural variation in human populations and will enhance our ability to link genetics and human health.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2014

Characterizing genetic variants for clinical action

Erin M. Ramos; Corina Din-Lovinescu; Jonathan S. Berg; Lisa D. Brooks; Audrey Duncanson; Michael Dunn; Peter Good; Tim Hubbard; Gail P. Jarvik; Christopher J. O'Donnell; Stephen T. Sherry; Naomi Aronson; Leslie G. Biesecker; Bruce Blumberg; Ned Calonge; Helen M. Colhoun; Robert S. Epstein; Paul Flicek; Erynn S. Gordon; Eric D. Green; Robert C. Green; Kensaku Kawamoto; William A. Knaus; David H. Ledbetter; Howard P. Levy; Elaine Lyon; Donna Maglott; Howard L. McLeod; Nazneen Rahman; Gurvaneet Randhawa

Genome‐wide association studies, DNA sequencing studies, and other genomic studies are finding an increasing number of genetic variants associated with clinical phenotypes that may be useful in developing diagnostic, preventive, and treatment strategies for individual patients. However, few variants have been integrated into routine clinical practice. The reasons for this are several, but two of the most significant are limited evidence about the clinical implications of the variants and a lack of a comprehensive knowledge base that captures genetic variants, their phenotypic associations, and other pertinent phenotypic information that is openly accessible to clinical groups attempting to interpret sequencing data. As the field of medicine begins to incorporate genome‐scale analysis into clinical care, approaches need to be developed for collecting and characterizing data on the clinical implications of variants, developing consensus on their actionability, and making this information available for clinical use. The National Human Genome Research Institute (NHGRI) and the Wellcome Trust thus convened a workshop to consider the processes and resources needed to: (1) identify clinically valid genetic variants; (2) decide whether they are actionable and what the action should be; and (3) provide this information for clinical use. This commentary outlines the key discussion points and recommendations from the workshop.


Genome Research | 1998

A DNA Polymorphism Discovery Resource for Research on Human Genetic Variation

Francis S. Collins; Lisa D. Brooks; Aravinda Chakravarti


Science | 2013

The Complexities of Genomic Identifiability

Laura Lyman Rodriguez; Lisa D. Brooks; Judith H. Greenberg; Eric D. Green


Methods of Molecular Biology | 2003

SNPs: Why Do We Care?

Lisa D. Brooks

Collaboration


Dive into the Lisa D. Brooks's collaboration.

Top Co-Authors

Avatar

Francis S. Collins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen T. Sherry

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alan E. Guttmacher

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Lyman Rodriguez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Teri A. Manolio

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna Maglott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Emily L. Harris

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eric D. Green

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge