Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa Kaser is active.

Publication


Featured researches published by Lisa Kaser.


Environmental Science & Technology | 2012

Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere

Haofei Zhang; David R. Worton; Michael Lewandowski; John Ortega; Caitlin L. Rubitschun; Jeong Hoo Park; Kasper Kristensen; Pedro Campuzano-Jost; Douglas A. Day; Jose L. Jimenez; Mohammed Jaoui; John H. Offenberg; Tadeusz E. Kleindienst; J. B. Gilman; William C. Kuster; Joost A. de Gouw; Changhyoun Park; Gunnar W. Schade; Amanda A. Frossard; Lynn M. Russell; Lisa Kaser; Werner Jud; Armin Hansel; Luca Cappellin; Thomas Karl; Marianne Glasius; Alex Guenther; Allen H. Goldstein; John H. Seinfeld; Avram Gold

2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM2.5) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM2.5 collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA.


Scientific Reports | 2015

Atmospheric benzenoid emissions from plants rival those from fossil fuels

Pawel K. Misztal; C. N. Hewitt; J. Wildt; James D. Blande; Allyson S. D. Eller; Silvano Fares; D. R. Gentner; J. B. Gilman; Martin Graus; James A Greenberg; Alex Guenther; Armin Hansel; Peter Harley; Maoyi Huang; K. Jardine; Thomas Karl; Lisa Kaser; Frank N. Keutsch; Astrid Kiendler-Scharr; E. Kleist; Tao Li; John E. Mak; A. C. Nölscher; R. Schnitzhofer; V. Sinha; Brenda Thornton; Carsten Warneke; Frederik Wegener; Christiane Werner; J. Williams

Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y−1), pointing to the importance of these natural emissions in atmospheric physics and chemistry.


Nature | 2016

Rapid cycling of reactive nitrogen in the marine boundary layer

Chunxiang Ye; X. Zhou; Dennis Pu; J. Stutz; James Festa; Max Spolaor; Catalina Tsai; C. A. Cantrell; Roy L. Mauldin; Teresa L. Campos; Andrew J. Weinheimer; Rebecca S. Hornbrook; Eric C. Apel; Alex Guenther; Lisa Kaser; Bin Yuan; Thomas Karl; Julie Haggerty; Samuel R. Hall; Kirk Ullmann; James N. Smith; John Ortega; Christoph Knote

Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A ‘renoxification’ process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth’s surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.


Journal of Geophysical Research | 2015

Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

Bin Yuan; Lisa Kaser; Thomas Karl; Martin Graus; J. Peischl; Teresa L. Campos; S. Shertz; Eric C. Apel; Rebecca S. Hornbrook; Alan J. Hills; J. B. Gilman; Carsten Warneke; F. Flocke; Thomas B. Ryerson; Alex Guenther; Joost A. de Gouw

© 2015. American Geophysical Union. All Rights Reserved. Emissions of methane (CH 4 ) and volatile organic compounds (VOCs) from oil and gas production may have large impacts on air quality and climate change. Methane and VOCs were measured over the Haynesville and Marcellus shale gas plays on board the National Center for Atmospheric Research C-130 and NOAA WP-3D research aircraft in June-July of 2013. We used an eddy covariance technique to measure in situ fluxes of CH 4 and benzene from both C-130 flights with high-resolution data (10Hz) and WP-3D flights with low-resolution data (1Hz). Correlation (R=0.65) between CH 4 and benzene fluxes was observed when flying over shale gas operations, and the enhancement ratio of fluxes was consistent with the corresponding concentration observations. Fluxes calculated by the eddy covariance method show agreement with a mass balance approach within their combined uncertainties. In general, CH 4 fluxes in the shale gas regions follow a lognormal distribution, with some deviations for relatively large fluxes (>10μgm-2s-1). Statistical analysis of the fluxes shows that a small number of facilities (i.e., ~10%) are responsible for up to ~40% of the total CH 4 emissions in the two regions. We show that the airborne eddy covariance method can also be applied in some circumstances when meteorological conditions do not favor application of the mass balance method. We suggest that the airborne eddy covariance method is a reliable alternative and complementary analysis method to estimate emissions from oil and gas extraction.


Bulletin of the American Meteorological Society | 2017

The convective transport of active species in the tropics (Contrast) experiment

Laura L. Pan; E. Atlas; R. J. Salawitch; Shawn B. Honomichl; James F. Bresch; William J. Randel; Eric C. Apel; Rebecca S. Hornbrook; Andrew J. Weinheimer; Daniel C. Anderson; Stephen J. Andrews; Sunil Baidar; Stuart Beaton; Teresa L. Campos; Lucy J. Carpenter; Dexian Chen; B. Dix; Valeria Donets; Samuel R. Hall; T. F. Hanisco; Cameron R. Homeyer; L. G. Huey; Jorgen B. Jensen; Lisa Kaser; Douglas E. Kinnison; Theodore K. Koenig; Jean-Francois Lamarque; Chuntao Liu; Jiali Luo; Zhengzhao Johnny Luo

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.


Geophysical Research Letters | 2015

Chemistry-turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere

Lisa Kaser; Thomas Karl; Bin Yuan; Roy L. Mauldin; C. A. Cantrell; Alex Guenther; Edward G. Patton; Andrew J. Weinheimer; Christoph Knote; John J. Orlando; Louisa Kent Emmons; Eric C. Apel; Rebecca S. Hornbrook; S. Shertz; Kirk Ullmann; Samuel R. Hall; Martin Graus; J. A. de Gouw; Xianliang Zhou; Chunxiang Ye

© 2015. American Geophysical Union. All Rights Reserved. The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene-dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (Is) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms.


Journal of Geophysical Research | 2016

An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere

Julie M. Nicely; Daniel C. Anderson; T. Canty; R. J. Salawitch; Glenn M. Wolfe; Eric C. Apel; S. R. Arnold; Elliot Atlas; Nicola J. Blake; James F. Bresch; Teresa L. Campos; Russell R. Dickerson; Bryan N. Duncan; Louisa Kent Emmons; M. J. Evans; Rafael P. Fernandez; Johannes Flemming; Samuel R. Hall; T. F. Hanisco; Shawn B. Honomichl; Rebecca S. Hornbrook; V. Huijnen; Lisa Kaser; Douglas E. Kinnison; Jean-Francois Lamarque; Jingqiu Mao; S. A. Monks; D. D. Montzka; Laura L. Pan; Daniel D. Riemer

Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January–February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO + NO2) by a factor of 2, resulting in OHCOL ~30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January–February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP.


Journal of Geophysical Research | 2016

Airborne measurements of BrO and the sum of HOBr and Br2 over the Tropical West Pacific from 1 to 15 km during the CONvective TRansport of Active Species in the Tropics (CONTRAST) experiment

Dexian Chen; L. Gregory Huey; David J. Tanner; R. J. Salawitch; Daniel C. Anderson; Pamela A. Wales; Laura L. Pan; Elliot Atlas; Rebecca S. Hornbrook; Eric C. Apel; Nicola J. Blake; Teresa L. Campos; Valeria Donets; F. Flocke; Samuel R. Hall; T. F. Hanisco; Alan J. Hills; Shawn B. Honomichl; Jorgen B. Jensen; Lisa Kaser; D. D. Montzka; Julie M. Nicely; J. Michael Reeves; Daniel D. Riemer; S. Schauffler; Kirk Ullmann; Andrew J. Weinheimer; Glenn M. Wolfe

A chemical ionization mass spectrometer was used to measure BrO and HOBr + Br2 over the Tropical West Pacific Ocean within the altitude range of 1 to 15 km, during the CONvective TRansport of Active Species in the Tropics (CONTRAST) campaign in 2014. Isolated episodes of elevated BrO (up to 6.6 pptv) and/or HOBr + Br2 (up to 7.3 pptv) were observed in the tropical free troposphere (TFT) and were associated with biomass burning. However, most of the time we did not observe significant BrO or HOBr + Br2 in the TFT and the tropical tropopause layer (TTL) above our limits of detection (LOD). The 1 min average LOD for BrO ranged from 0.6 to 1.6 pptv and for HOBr + Br2 ranged from 1.3 to 3.5 pptv. During one flight, BrO observations from the TTL to the extratropical lowermost stratosphere were used to infer a profile of inorganic bromine (Bry). Based on this profile, we estimated the product gas injection of bromine species into the stratosphere to be 2 pptv. Analysis of Bry partitioning further indicates that BrO levels are likely very low in the TFT environment and that future studies should target the measurement of HBr or atomic Br.


Science of The Total Environment | 2017

Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests

Haofei Yu; Alex Guenther; Dasa Gu; Carsten Warneke; Chris Geron; Allen H. Goldstein; Martin Graus; Thomas Karl; Lisa Kaser; Pawel K. Misztal; Bin Yuan

Isoprene and monoterpene emission rates are essential inputs for atmospheric chemistry models that simulate atmospheric oxidant and particle distributions. Process studies of the biochemical and physiological mechanisms controlling these emissions are advancing our understanding and the accuracy of model predictions but efforts to quantify regional emissions have been limited by a lack of constraints on regional distributions of ecosystem emission capacities. We used an airborne wavelet-based eddy covariance measurement technique to characterize isoprene and monoterpene fluxes with high spatial resolution during the 2013 SAS (Southeast Atmosphere Study) in the southeastern United States. The fluxes measured by direct eddy covariance were comparable to emissions independently estimated using an indirect inverse modeling approach. Isoprene emission factors based on the aircraft wavelet flux estimates for high isoprene chemotypes (e.g., oaks) were similar to the MEGAN2.1 biogenic emission model estimates for landscapes dominated by oaks. Aircraft flux measurement estimates for landscapes with fewer isoprene emitting trees (e.g., pine plantations), were about a factor of two lower than MEGAN2.1 model estimates. The tendency for high isoprene emitters in these landscapes to occur in the shaded understory, where light dependent isoprene emissions are diminished, may explain the lower than expected emissions. This result demonstrates the importance of accurately representing the vertical profile of isoprene emitting biomass in biogenic emission models. Airborne measurement-based emission factors for high monoterpene chemotypes agreed with MEGAN2.1 in landscapes dominated by pine (high monoterpene chemotype) trees but were more than a factor of three higher than model estimates for landscapes dominated by oak (relatively low monoterpene emitting) trees. This results suggests that unaccounted processes, such as floral emissions or light dependent monoterpene emissions, or vegetation other than high monoterpene emitting trees may be an important source of monoterpene emissions in those landscapes and should be identified and included in biogenic emission models.


Journal of Geophysical Research | 2017

The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range

Lisa Kaser; Edward G. Patton; G. G. Pfister; Andrew J. Weinheimer; D. D. Montzka; F. Flocke; Anne M. Thompson; Ryan M. Stauffer; Hannah S. Halliday

Ozone concentrations at the Earths surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPE (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Experiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of ~5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of −1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10–15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6–0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.

Collaboration


Dive into the Lisa Kaser's collaboration.

Top Co-Authors

Avatar

Thomas Karl

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar

Eric C. Apel

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Rebecca S. Hornbrook

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Weinheimer

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Alex Guenther

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Armin Hansel

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar

Teresa L. Campos

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

D. D. Montzka

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

F. Flocke

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Martin Graus

University of Innsbruck

View shared research outputs
Researchain Logo
Decentralizing Knowledge