Lisa Sundqvist
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Sundqvist.
Ecology and Evolution | 2016
Lisa Sundqvist; Kevin Keenan; Martin Zackrisson; Paulo A. Prodöhl; David Kleinhans
Abstract Understanding the population structure and patterns of gene flow within species is of fundamental importance to the study of evolution. In the fields of population and evolutionary genetics, measures of genetic differentiation are commonly used to gather this information. One potential caveat is that these measures assume gene flow to be symmetric. However, asymmetric gene flow is common in nature, especially in systems driven by physical processes such as wind or water currents. As information about levels of asymmetric gene flow among populations is essential for the correct interpretation of the distribution of contemporary genetic diversity within species, this should not be overlooked. To obtain information on asymmetric migration patterns from genetic data, complex models based on maximum‐likelihood or Bayesian approaches generally need to be employed, often at great computational cost. Here, a new simpler and more efficient approach for understanding gene flow patterns is presented. This approach allows the estimation of directional components of genetic divergence between pairs of populations at low computational effort, using any of the classical or modern measures of genetic differentiation. These directional measures of genetic differentiation can further be used to calculate directional relative migration and to detect asymmetries in gene flow patterns. This can be done in a user‐friendly web application called divMigrate‐online introduced in this study. Using simulated data sets with known gene flow regimes, we demonstrate that the method is capable of resolving complex migration patterns under a range of study designs.
Molecular Ecology | 2015
Conny Sjöqvist; Anna Godhe; Per R. Jonsson; Lisa Sundqvist; A. Kremp
Drivers of population genetic structure are still poorly understood in marine micro‐organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500‐km‐long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low‐salinity Baltic Sea population and a high‐salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone.
Proceedings of the Royal Society of London B: Biological Sciences | 2013
Anna Godhe; Jenny Egardt; David Kleinhans; Lisa Sundqvist; Robinson Hordoir; Per R. Jonsson
We investigated the gene flow of the common marine diatom, Skeletonema marinoi, in Scandinavian waters and tested the null hypothesis of panmixia. Sediment samples were collected from the Danish Straits, Kattegat and Skagerrak. Individual strains were established from germinated resting stages. A total of 350 individuals were genotyped by eight microsatellite markers. Conventional F-statistics showed significant differentiation between the samples. We therefore investigated whether the genetic structure could be explained using genetic models based on isolation by distance (IBD) or by oceanographic connectivity. Patterns of oceanographic circulation are seasonally dependent and therefore we estimated how well local oceanographic connectivity explains gene flow month by month. We found no significant relationship between genetic differentiation and geographical distance. Instead, the genetic structure of this dominant marine primary producer is best explained by local oceanographic connectivity promoting gene flow in a primarily south to north direction throughout the year. Oceanographic data were consistent with the significant FST values between several pairs of samples. Because even a small amount of genetic exchange prevents the accumulation of genetic differences in F-statistics, we hypothesize that local retention at each sample site, possibly as resting stages, is an important component in explaining the observed genetic structure.
PLOS ONE | 2016
Angelica Ardehed; Daniel J.A. Johansson; Lisa Sundqvist; Ellen Schagerström; Zuzanna Zagrodzka; Nikolaj A. Kovaltchouk; Lena Bergström; Lena Kautsky; Marina Rafajlović; Ricardo T. Pereyra; Kerstin Johannesson
Closely related taxa provide significant case studies for understanding evolution of new species but may simultaneously challenge species identification and definition. In the Baltic Sea, two dominant and perennial brown algae share a very recent ancestry. Fucus vesiculosus invaded this recently formed postglacial sea 8000 years ago and shortly thereafter Fucus radicans diverged from this lineage as an endemic species. In the Baltic Sea both species reproduce sexually but also recruit fully fertile new individuals by asexual fragmentation. Earlier studies have shown local differences in morphology and genetics between the two taxa in the northern and western Bothnian Sea, and around the island of Saaremaa in Estonia, but geographic patterns seem in conflict with a single origin of F. radicans. To investigate the relationship between northern and Estonian distributions, we analysed the genetic variation using 9 microsatellite loci in populations from eastern Bothnian Sea, Archipelago Sea and the Gulf of Finland. These populations are located in between earlier studied populations. However, instead of bridging the disparate genetic gap between N-W Bothnian Sea and Estonia, as expected from a simple isolation-by-distance model, the new populations substantially increased overall genetic diversity and showed to be strongly divergent from the two earlier analysed regions, showing signs of additional distinct populations. Contrasting earlier findings of increased asexual recruitment in low salinity in the Bothnian Sea, we found high levels of sexual reproduction in some of the Gulf of Finland populations that inhabit extremely low salinity. The new data generated in this study supports the earlier conclusion of two reproductively isolated but very closely related species. However, the new results also add considerable genetic and morphological complexity within species. This makes species separation at geographic scales more demanding and suggests a need for more comprehensive approaches to further disentangle the intriguing relationship and history of the Baltic Sea fucoids.
Journal of Evolutionary Biology | 2017
Marina Rafajlović; David Kleinhans; Christian Gulliksson; Johan Fries; Daniel J.A. Johansson; Angelica Ardehed; Lisa Sundqvist; Ricardo T. Pereyra; B. Mehlig; Per R. Jonsson; Kerstin Johannesson
In species reproducing both sexually and asexually clones are often more common in recently established populations. Earlier studies have suggested that this pattern arises due to natural selection favouring generally or locally successful genotypes in new environments. Alternatively, as we show here, this pattern may result from neutral processes during species’ range expansions. We model a dioecious species expanding into a new area in which all individuals are capable of both sexual and asexual reproduction, and all individuals have equal survival rates and dispersal distances. Even under conditions that favour sexual recruitment in the long run, colonization starts with an asexual wave. After colonization is completed, a sexual wave erodes clonal dominance. If individuals reproduce more than one season, and with only local dispersal, a few large clones typically dominate for thousands of reproductive seasons. Adding occasional long‐distance dispersal, more dominant clones emerge, but they persist for a shorter period of time. The general mechanism involved is simple: edge effects at the expansion front favour asexual (uniparental) recruitment where potential mates are rare. Specifically, our model shows that neutral processes (with respect to genotype fitness) during the population expansion, such as random dispersal and demographic stochasticity, produce genotype patterns that differ from the patterns arising in a selection model. The comparison with empirical data from a post‐glacially established seaweed species (Fucus radicans) shows that in this case, a neutral mechanism is strongly supported.
The ISME Journal | 2018
Lisa Sundqvist; Anna Godhe; Per R. Jonsson; Josefin Sefbom
Understanding the genetic structure of populations is key to revealing past and present demographic and evolutionary processes in a species. In the past decade high genetic differentiation has been observed in many microbial species challenging the previous view of cosmopolitan distribution. Populations have displayed high genetic differentiation, even at small spatial scales, despite apparent high dispersal. Numerous species of microalgae have a life-history strategy that includes a long-term resting stage, which can accumulate in sediments and serve as refuge during adverse conditions. It is presently unclear how these seed banks affect the genetic structure of populations in aquatic environments. Here we provide a conceptual framework, using a simple model, to show that long-term resting stages have an anchoring effect on populations leading to increased genetic diversity and population differentiation in the presence of gene flow. The outcome that species with resting stages have a higher degree of genetic differentiation compared to species without, is supported by empirical data obtained from a systematic literature review. With this work we propose that seed banks in aquatic microalgae play an important role in the contradicting patterns of gene flow, and ultimately the adaptive potential and population dynamics in species with long-term resting stages.
AMBIO: A Journal of the Human Environment | 2012
Lisa Sundqvist; Tero Härkönen; Carl Johan Svensson; Karin C. Harding
Journal of Biogeography | 2016
Anna Godhe; Conny Sjöqvist; Sirje Sildever; Josefin Sefbom; Sara Harðardóttir; Mireia Bertos-Fortis; Carina Bunse; Susanna Gross; Emma Johansson; Per R. Jonsson; Saghar Khandan; Catherine Legrand; Inga Lips; Nina Lundholm; Karin Rengefors; Ingrid Sassenhagen; Sanna Suikkanen; Lisa Sundqvist; Anke Kremp
Archive | 2016
Lisa Sundqvist
Archive | 2013
Lisa Sundqvist; Martin Zackrisson; David Kleinhans