Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Long Wan is active.

Publication


Featured researches published by Long Wan.


ACS Applied Materials & Interfaces | 2015

Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance.

Ning Han; Qinfu Zhao; Long Wan; Ying Wang; Yikun Gao; Pu Wang; Zhanyou Wang; Jinghai Zhang; Tongying Jiang; Siling Wang

Multidrug resistance (MDR) is known to be a great obstruction to successful chemotherapy, and considerable efforts have been devoted to reverse MDR including designing various functional drug delivery systems. In this study, hybrid lipid-capped mesoporous silica nanoparticles (LTMSNs), aimed toward achieving stimuli-responsive drug release to circumvent MDR, were specially designated for drug delivery. After modifying MSNs with hydrophobic chains through disulfide bond on the surface, lipid molecules composing polymer d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) with molar ratio of 5:1 were subsequently added to self-assemble into a surrounded lipid layer via hydrophobic interaction acting as smart valves to block the pore channels of carrier. The obtained LTMSNs had a narrow size distribution of ca. 190 nm and can be stably dispersed in body fluids, which may ensure a long circulating time and ideal enhanced permeability and retention effect. Doxorubicin (DOX) was chosen as a model drug to be encapsulated into LTMSNs. Results showed that this hybrid lipid-capped mesoporous silica drug delivery system can achieve redox and pH-responsive release of DOX, thereby avoiding the premature leakage of drug before reaching the specific site and releasing DOX within the cancerous cells. Owing to the presence of TPGS-containing lipid layer, LTMSNs-DOX exhibited higher uptake efficiency, cytotoxicity, and increased intracellular accumulation in resistant MCF-7/Adr cells compared with DOX solution, proving to be a promising vehicle to realize intracellular drug release and inhibit drug efflux.


Materials Science and Engineering: C | 2014

Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: Influence of pore size on release rate

Wenquan Zhu; Long Wan; Chen Zhang; Yikun Gao; Xin Zheng; Tongying Jiang; Siling Wang

The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug-silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0nm increased, the dissolution rate of CEL from FMS gradually increased.


Acta Biomaterialia | 2015

Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery.

Tianyi Wang; Haitao Jiang; Long Wan; Qinfu Zhao; Tongying Jiang; Bing Wang; Siling Wang

Novel multifunctional porous titanium dioxide (TiO2) nanoparticles modified with polyethylenimine (PEI) were developed to explore the feasibility of exploiting the photocatalytic property of titanium dioxide to achieve ultraviolet (UV) light triggered drug release. Additionally, in order to further realize targeting delivery, folic acid, which chemically conjugated to the surface of the functionalized multifunctional porous TiO2 nanoparticles through amide linkage with free amine groups of PEI, was used as a cancer-targeting agent to effectively promote cancer-cell-specific uptake through receptor-mediated endocytosis. And a typical poorly water-soluble anti-cancer drug, paclitaxel, was encapsulated in multifunctional porous TiO2 nanoparticles. The PEI on the surface of multifunctional porous TiO2 nanoparticles could effectively block the channel to prevent premature drug release, thus providing enough circulation time to target cancer cells. Following UV light radiation, PEI molecules on the surface were cut off by the free radicals (OH˙ and O2-) that TiO2 produced, and then the drug loaded in the carrier was released rapidly into the cytoplasm. Importantly, the amount of drug released from multifunctional porous TiO2 nanoparticles can be regulated by the UV-light radiation time to further control the anti-cancer effect. This multifunctional porous TiO2 nanoparticle exhibits a combination of stimuli-triggered drug release and cancer cell targeting. The authors believe that the present study will provide important information for the use of porous TiO2 nanomaterials in light-controlled drug release and targeted therapy.


International Journal of Pharmaceutics | 2013

Mesoporous carbon as a novel drug carrier of fenofibrate for enhancement of the dissolution and oral bioavailability.

Xia Niu; Long Wan; Zhong Hou; Tianyi Wang; Changshan Sun; Jin Sun; Peng Zhao; Tongying Jiang; Siling Wang

The purpose of this study was to develop mesoporous carbon loaded with a poorly watersoluble drug to enhance the drug dissolution and improve the oral bioavailability. Mesoporous carbon was synthesized using Pluronic 127 triblock polymer (F127), TEOS and phenolic resins. Fenofibrate (FFB) was chosen as a model drug and loaded onto mesoporous carbon using three different loading methods involving incipient wetness impregnation, and the solvent and melting methods. The effect of the physical state and the specific surface area were investigated using nitrogen adsorption, transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was found that the physicochemical properties of the drug as well as the drug loading methods had critical effects on the drug release rate. In vitro drug release studies showed that incorporation of FFB in mesoporous carbon greatly enhanced the dissolution rate in comparison with that of the pure crystalline drug. Moreover, the oral bioavailability of the drug from mesoporous carbon was higher than that of FFB commercial capsules. Furthermore, mesoporous carbon produced no irritation of the mucosa of the gastrointestinal tract as shown by gastric mucosa irritation test.


International Journal of Pharmaceutics | 2015

Folate-polyethyleneimine functionalized mesoporous carbon nanoparticles for enhancing oral bioavailability of paclitaxel.

Long Wan; Xiaofan Wang; Wenquan Zhu; Chen Zhang; Aihua Song; Changshan Sun; Tongying Jiang; Siling Wang

Polymer-functionalized carbon nanoparticles hold great promise for their use in enhancing the oral absorption of drugs with poor oral bioavailability. And since the abundant expression of folate receptors in intestinal tract, folic acid (FA) modified uniform mesoporous carbon spheres (UMCS) was used to improve oral absorption of paclitaxel, a chemotherapeutic drug with poor oral bioavailability. In this research, folate-polyethyleneimine (FA-PEI) was grafted onto acid-treated uniform mesoporous carbon spheres through one-step electrostatic attraction. PTX was loaded into mesopores of nanoparticles through solvent evaporation, present as amorphous. The release of PTX from the FA-PEI-UMCS nanoparticles exhibited an initial rapid release, followed by a sustained release. And release rate could be regulated by changing amount of FA-PEI complex on the UMCS. The uptake of PTX-encapsulated nanoparticles was studied exploiting Caco-2 cells as an in vitro model. The results of confocal microscopy and flow cytometry demonstrated that folate functionalization enhanced internalization of nanoparticles by the cells. Moreover, PTX loaded in FA-PEI-UMCS nanoparticles resulted in a 5.37-fold increase in apparent permeability (Papp) across Caco-2 cell monolayers compared to Taxol(®). And the in vivo results showed that FA-PEI-UMCS nanoparticles did not only improve the oral bioavailability of PTX, but also decrease the gastrointestinal toxicity of PTX. In conclusion, the FA-PEI-UMCS nanoparticles might be a potentially applicable system to improve oral absorption of drugs with poor oral bioavailability.


International Journal of Pharmaceutics | 2014

Poly dimethyl diallyl ammonium coated CMK-5 for sustained oral drug release

Chen Zhang; Qinfu Zhao; Long Wan; Tianyi Wang; Jin Sun; Yikun Gao; Tongying Jiang; Siling Wang

A new oral sustained drug delivery system (DDS) involving a combination of inorganic mesoporous material (CMK-5) and organic polymer poly dimethyl diallyl ammonium (PDDA) was established to determine its general suitability for use with poorly water soluble drugs. Nimodipine, carvedilol and fenofibrate, three different drugs with acidic or alkaline properties, were selected as model drugs and loaded into carriers. The physicochemical properties of the drug carriers were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption. The structural body changes of the composites in release medium, with or without additional salts, were also studied using particle sizing systems, nitrogen adsorption and zeta potential measurement in order to investigate the sustained release mechanism of the drugs. The results obtained showed that sustained release of drug from the designed DDS was mainly due to the blockage effect arising from the strong swelling of the coated polymers when in contact with release medium. Additional salts, when they reached a certain level, allowed a dramatic burst release. We believe that our designed sustained DDS provide a new option for water insoluble drugs and can be considered as fundamental for those more sophisticated DDS increasingly required in modern medical treatments.


Drug Development and Industrial Pharmacy | 2014

Preparation of novel porous starch microsphere foam for loading and release of poorly water soluble drug

Tongying Jiang; Chao Wu; Yikun Gao; Wenquan Zhu; Long Wan; Zhanyou Wang; Siling Wang

Abstract Background: Organic porous material is a promising carrier for enhancing the dissolution of poorly water soluble drug. The aim of the present study was to enhance dissolution and oral bioavailability of lovastatin (LV) by preparing a porous starch microsphere foam (PSM) using a novel method, meanwhile, looking into the mechanism of improving dissolution of LV. Methods: PSM was prepared by the W/O emulsion – freeze thawing method. The porous structure of PSM was characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. The adsorption role of nanopores on the drug dissolution and physical state of LV was systematically studied by instrumental analysis, and in vitro and in vivo drug dissolution studies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate carrier cytotoxicity. Results: The SEM images of PSM showed nanometer-sized pores. Physical state characterization indicated that porous structure effectively limited the degree of crystallinity of LV. The results of in vitro and in vivo tests testified that PSM accelerated the release of LV and enhanced its oral bioavailability in comparison with crude LV and commercial capsules. The loaded PSM powder indicated a good physical stability under storage for 12 months. MTT assay shows PSM has no toxicity for Caco-2 cell. Conclusion: The preparation was a promising method to produce small and uniform PSM with markedly enhanced dissolution rate and oral bioavailability due to the spatial confinement effect of porous structure. The present work demonstrates the significant potential for the use of PSM as a novel delivery system for poorly water soluble drugs.


Journal of Controlled Release | 2015

Hybrid lipid-mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance.

Ning Han; Qinfu Zhao; Long Wan; Ying Wang; Yikun Gao; Tongying Jiang; Siling Wang

Multidrug resistance (MDR) is known to be a great obstruction to successful chemotherapy, and considerable efforts have been devoted to reverse MDR including designing various functional drug delivery systems. In this study, hybrid lipid-capped mesoporous silica nanoparticles (LTMSNs), aimed toward achieving stimuli-responsive drug release to circumvent MDR, were specially designated for drug delivery. After modifying MSNs with hydrophobic chains through disulfide bond on the surface, lipid molecules composing polymer d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) with molar ratio of 5:1 were subsequently added to self-assemble into a surrounded lipid layer via hydrophobic interaction acting as smart valves to block the pore channels of carrier. The obtained LTMSNs had a narrow size distribution of ca. 190 nm and can be stably dispersed in body fluids, which may ensure a long circulating time and ideal enhanced permeability and retention effect. Doxorubicin (DOX) was chosen as a model drug to be...


Carbon | 2014

Versatile hybrid polyethyleneimine–mesoporous carbon nanoparticles for targeted delivery

Long Wan; Qinfu Zhao; Peng Zhao; Bing He; Tongying Jiang; Qiang Zhang; Siling Wang


Microporous and Mesoporous Materials | 2015

Paclitaxel/gelatin coated magnetic mesoporous silica nanoparticles: Preparation and antitumor efficacy in vivo

Erxi Che; Yikun Gao; Long Wan; Ying Zhang; Ning Han; Junling Bai; Jia Li; Zhou Sha; Siling Wang

Collaboration


Dive into the Long Wan's collaboration.

Top Co-Authors

Avatar

Siling Wang

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Tongying Jiang

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Qinfu Zhao

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yikun Gao

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Chen Zhang

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Ning Han

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Tianyi Wang

Northeastern University

View shared research outputs
Top Co-Authors

Avatar

Wenquan Zhu

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Changshan Sun

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Erxi Che

Shenyang Pharmaceutical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge