Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorell Discenza is active.

Publication


Featured researches published by Lorell Discenza.


Journal of Medicinal Chemistry | 2008

Discovery of Dapagliflozin: A Potent, Selective Renal Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes

Wei Meng; Bruce A. Ellsworth; Alexandra A. Nirschl; Peggy J. McCann; Manorama Patel; Ravindar N Girotra; Gang Wu; Philip M. Sher; Eamonn P. Morrison; Scott A. Biller; Robert Zahler; Prashant P. Deshpande; Annie Pullockaran; Deborah Hagan; Nathan Morgan; Joseph R. Taylor; Mary T. Obermeier; William G. Humphreys; Ashish Khanna; Lorell Discenza; James G. Robertson; Aiying Wang; Songping Han; John R. Wetterau; Evan B. Janovitz; Oliver P. Flint; Jean M. Whaley; William N. Washburn

The C-aryl glucoside 6 (dapagliflozin) was identified as a potent and selective hSGLT2 inhibitor which reduced blood glucose levels in a dose-dependent manner by as much as 55% in hyperglycemic streptozotocin (STZ) rats. These findings, combined with a favorable ADME profile, have prompted clinical evaluation of dapagliflozin for the treatment of type 2 diabetes.


Drug Metabolism and Disposition | 2010

In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans.

Mary T. Obermeier; Ming Yao; Ashish Khanna; Barry Koplowitz; Mingshe Zhu; Wenying Li; Bernard J. Komoroski; Sreeneeranj Kasichayanula; Lorell Discenza; William N. Washburn; Wei Meng; Bruce A. Ellsworth; Jean M. Whaley; William G. Humphreys

(2S,3R,4R,5S,6R)-2-(3-(4-Ethoxybenzyl)-4-chlorophenyl)-6-hydroxymethyl-tetrahydro-2H-pyran-3,4,5-triol (dapagliflozin; BMS-512148) is a potent sodium-glucose cotransporter type II inhibitor in animals and humans and is currently under development for the treatment of type 2 diabetes. The preclinical characterization of dapagliflozin, to allow compound selection and prediction of pharmacological and dispositional behavior in the clinic, involved Caco-2 cell permeability studies, cytochrome P450 (P450) inhibition and induction studies, P450 reaction phenotyping, metabolite identification in hepatocytes, and pharmacokinetics in rats, dogs, and monkeys. Dapagliflozin was found to have good permeability across Caco-2 cell membranes. It was found to be a substrate for P-glycoprotein (P-gp) but not a significant P-gp inhibitor. Dapagliflozin was not found to be an inhibitor or an inducer of human P450 enzymes. The in vitro metabolic profiles of dapagliflozin after incubation with hepatocytes from mice, rats, dogs, monkeys, and humans were qualitatively similar. Rat hepatocyte incubations showed the highest turnover, and dapagliflozin was most stable in human hepatocytes. Prominent in vitro metabolic pathways observed were glucuronidation, hydroxylation, and O-deethylation. Pharmacokinetic parameters for dapagliflozin in preclinical species revealed a compound with adequate oral exposure, clearance, and elimination half-life, consistent with the potential for single daily dosing in humans. The pharmacokinetics in humans after a single dose of 50 mg of [14C]dapagliflozin showed good exposure, low clearance, adequate half-life, and no metabolites with significant pharmacological activity or toxicological concern.


Bioanalysis | 2010

DBS sampling can be used to stabilize prodrugs in drug discovery rodent studies without the addition of esterase inhibitors

Celia D'Arienzo; Qin C Ji; Lorell Discenza; Georgia Cornelius; John Hynes; Lyndon A. M. Cornelius; Joseph B. Santella; Timothy Olah

BACKGROUND Prodrugs that exhibit ex vivo instability owing to high levels of esterases in rodent blood, plasma and serum present challenges in the accurate determination of drug exposure in samples from pharmacokinetic, pharmacokinetic/pharmacodynamic, efficacy and toxicology studies in drug discovery. Ensuring the stability of analytes in sample collection, handling, analysis and storage must be established for program progression. Current protocols for the stabilization of prodrugs include the immediate quenching of whole blood with acetonitrile or methanol to stop enzyme activity, or the addition of an esterase inhibitor such as phenylmethanesulfonyl fluoride to the blood collection tubes before serum or plasma is generated. Dried blood spots (DBS) sampling may offer an alternative prodrug stabilization method for sample collection and storage from rodent studies in drug discovery. RESULTS Two different prodrugs of the same parent compound that were known to exhibit ex vivo instability in rodent blood were selected for the evaluation of DBS for analyte stabilization. Each prodrug was spiked separately into fresh rat EDTA whole blood and prepared three ways: from liquid whole blood, prepared and analyzed as lysate; from whole blood spotted onto Whatman 903(®) Protein Saver untreated cards (903 cards); and from whole blood spotted onto Whatman FTA(®) Elute Micro treated cards, currently known as DMPK-B cards (FTA cards). Samples were extracted by filtration-assisted protein precipitation at 0, 2, 5 and 24 h and 4, 7, 14 and 21 days after spiking and analyzed by UHPLC-MS/MS. CONCLUSIONS For these two prodrugs, stability on DBS cards was observed in rat EDTA whole blood for at least 21 days at room temperature as determined by loss of prodrug and appearance of parent. The Whatman FTA Elute cards, treated with reagents that lyse cells, did not offer more stability for the investigated compounds than the Whatman 903 Protein Saver untreated cards.


Journal of Medicinal Chemistry | 2009

Discovery of a 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitor (BMS-754807) of insulin-like growth factor receptor (IGF-1R) kinase in clinical development.

Mark D. Wittman; Joan M. Carboni; Zheng Yang; Francis Y. Lee; Melissa Antman; Ricardo M. Attar; Praveen Balimane; Chiehying Chang; Cliff Chen; Lorell Discenza; David B. Frennesson; Marco M. Gottardis; Ann Greer; Warren Hurlburt; Walter Lewis Johnson; David R. Langley; Aixin Li; Jianqing Li; Peiying Liu; Harold Mastalerz; Arvind Mathur; Krista Menard; Karishma Patel; John S. Sack; Xiaopeng Sang; Mark G. Saulnier; Daniel J. Smith; Kevin Stefanski; George L. Trainor; Upender Velaparthi

This report describes the biological activity, characterization, and SAR leading to 9d (BMS-754807) a small molecule IGF-1R kinase inhibitor in clinical development.


Journal of Medicinal Chemistry | 2008

Discovery and evaluation of 4-(2-(4-chloro-1H-pyrazol-1-yl)ethylamino)-3-(6-(1-(3-fluoropropyl)piperidin-4-yl)-4-methyl-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-695735), an orally efficacious inhibitor of insulin-like growth factor-1 receptor kinase with broad spectrum in vivo antitumor activity.

Upender Velaparthi; Mark D. Wittman; Peiying Liu; Joan M. Carboni; Francis Y. Lee; Ricardo M. Attar; Praveen Balimane; Wendy Clarke; Michael Sinz; Warren Hurlburt; Karishma Patel; Lorell Discenza; Sean Kim; Marco M. Gottardis; Ann Greer; Aixin Li; Mark G. Saulnier; Zheng Yang; Kurt Zimmermann; George L. Trainor; Dolatrai M. Vyas

We previously reported that 1 (BMS-536924), a benzimidazole inhibitor of the insulin-like growth factor-1 receptor, had demonstrated in vivo antitumor activity. This lead compound was found to have potent CYP3A4 inhibition, CYP3A4 induction mediated by PXR transactivation, poor aqueous solubility, and high plasma protein binding. Herein we disclose the evolution of this chemotype to address these issues. This effort led to 10 (BMS-695735), which exhibits improved ADME properties, a low risk for drug-drug interactions, and in vivo efficacy in multiple xenograft models.


Journal of Medicinal Chemistry | 2008

Design, structure-activity relationships, X-ray crystal structure, and energetic contributions of a critical P1 pharmacophore: 3-chloroindole-7-yl-based factor Xa inhibitors.

Yan Shi; Doree Sitkoff; Jing Zhang; Herbert E. Klei; Kevin Kish; Eddie C.-K. Liu; Karen S. Hartl; Steve M. Seiler; Ming Chang; Christine Huang; Sonia Youssef; Thomas E. Steinbacher; William A. Schumacher; Nyeemah Grazier; Andrew T. Pudzianowski; Atsu Apedo; Lorell Discenza; Joseph Yanchunas; Philip D. Stein; Karnail S. Atwal

An indole-based P1 moiety was incorporated into a previously established factor Xa inhibitor series. The indole group was designed to hydrogen-bond with the carbonyl of Gly218, while its 3-methyl or 3-chloro substituent was intended to interact with Tyr228. These interactions were subsequently observed in the X-ray crystal structure of compound 18. SAR studies led to the identification of compound 20 as the most potent FXa inhibitor in this series (IC(50) = 2.4 nM, EC(2xPT) = 1.2 microM). An in-depth energetic analysis suggests that the increased binding energy of 3-chloroindole-versus 3-methylindole-containing compounds in this series is due primarily to (a) the more hydrophobic nature of chloro- versus methyl-containing compounds and (b) an increased interaction of 3-chloroindole versus 3-methylindole with Gly218 backbone. The stronger hydrophobicity of chloro- versus methyl-substituted aromatics may partly explain the general preference for chloro- versus methyl-substituted P1 groups in FXa, which extends beyond the current series.


Bioorganic & Medicinal Chemistry Letters | 2008

Balancing oral exposure with Cyp3A4 inhibition in benzimidazole-based IGF-IR inhibitors.

Kurt Zimmermann; Mark D. Wittman; Mark G. Saulnier; Upender Velaparthi; David R. Langley; Xiaopeng Sang; David B. Frennesson; Joan M. Carboni; Aixin Li; Ann Greer; Marco M. Gottardis; Ricardo M. Attar; Zheng Yang; Praveen Balimane; Lorell Discenza; Dolatrai M. Vyas

3-(Benzimidazol-2-yl)-pyridine-2-one-based ATP competitive inhibitors of Insulin-like Growth Factor 1 Kinase (IGF-IR) were optimized for reduced Cyp3A4 inhibition and improved oral exposure. The use of malonate as methyl anion synthon via S(N)Ar reaction and double decarboxylation under mild conditions is demonstrated.


Bioorganic & Medicinal Chemistry Letters | 2010

SAR of PXR transactivation in benzimidazole-based IGF-1R kinase inhibitors

Kurt Zimmermann; Mark D. Wittman; Mark G. Saulnier; Upender Velaparthi; Xiaopeng Sang; David B. Frennesson; Charles Struzynski; Steven P. Seitz; Liqi He; Joan M. Carboni; Aixin Li; Ann Greer; Marco M. Gottardis; Ricardo M. Attar; Zheng Yang; Praveen Balimane; Lorell Discenza; Francis Y. Lee; Michael Sinz; Sean Kim; Dolatrai M. Vyas

The SAR of PXR transactivation by 3-(benzimidazol-2-yl)-pyridine-2-one based ATP competitive inhibitors of Insulin-like Growth Factor 1 Receptor kinase (IGF-1R) is discussed. Compounds without PXR transactivation, with in vivo antitumor activity, reduced protein binding and improved oral exposure are presented.


Journal of Medicinal Chemistry | 2016

Small Molecule Reversible Inhibitors of Bruton’s Tyrosine Kinase (BTK): Structure–Activity Relationships Leading to the Identification of 7-(2-Hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide (BMS-935177)

George V. De Lucca; Qing Shi; Qingjie Liu; Douglas G. Batt; Myra Beaudoin Bertrand; Rick Rampulla; Arvind Mathur; Lorell Discenza; Celia D’Arienzo; Jun Dai; Mary T. Obermeier; Rodney Vickery; Yingru Zhang; Zheng Yang; Punit Marathe; Andrew J. Tebben; Jodi K. Muckelbauer; ChiehYing J. Chang; Huiping Zhang; Kathleen M. Gillooly; Tracy L. Taylor; Mark A. Pattoli; Stacey Skala; Daniel W. Kukral; Kim W. McIntyre; Luisa Salter-Cid; Aberra Fura; James R. Burke; Joel C. Barrish; Percy H. Carter

Brutons tyrosine kinase (BTK) belongs to the TEC family of nonreceptor tyrosine kinases and plays a critical role in multiple cell types responsible for numerous autoimmune diseases. This article will detail the structure-activity relationships (SARs) leading to a novel second generation series of potent and selective reversible carbazole inhibitors of BTK. With an excellent pharmacokinetic profile as well as demonstrated in vivo activity and an acceptable safety profile, 7-(2-hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide 6 (BMS-935177) was selected to advance into clinical development.


Bioanalysis | 2012

A bioanalytical strategy utilizing dried blood spot sampling and LC-MS/MS in discovery toxicology studies

Lorell Discenza; Mary T. Obermeier; Richard A. Westhouse; Timothy Olah; Celia D’Arienzo

BACKGROUND & METHOD The small sample volumes characteristic to dried blood spot (DBS) sampling enabled us to right-shift the linear dynamic range of an LC-MS/MS plasma assay tenfold and eliminate the need for extensive sample dilution in support of three discovery toxicology studies in which both plasma and DBS samples were collected. With the right-shifted DBS assay range, no DBS study samples required dilution, while all of the plasma samples were diluted 5-50-fold. RESULTS DBS standard curves from 78-80,000 nM were linear, the performance of the curve and QC samples was within acceptable discovery-assay criteria and individual plasma and DBS data were comparable. Linear correlations of C(max) and AUC derived from DBS and plasma data resulted in R(2) > 0.9. CONCLUSION This bioanalytical strategy represents a benefit to the bioanalyst that can expedite the return of data and minimize the potential for error and variability that can result from extensive dilutions of study samples.

Collaboration


Dive into the Lorell Discenza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aixin Li

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge