Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary T. Obermeier is active.

Publication


Featured researches published by Mary T. Obermeier.


Journal of Medicinal Chemistry | 2008

Discovery of Dapagliflozin: A Potent, Selective Renal Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes

Wei Meng; Bruce A. Ellsworth; Alexandra A. Nirschl; Peggy J. McCann; Manorama Patel; Ravindar N Girotra; Gang Wu; Philip M. Sher; Eamonn P. Morrison; Scott A. Biller; Robert Zahler; Prashant P. Deshpande; Annie Pullockaran; Deborah Hagan; Nathan Morgan; Joseph R. Taylor; Mary T. Obermeier; William G. Humphreys; Ashish Khanna; Lorell Discenza; James G. Robertson; Aiying Wang; Songping Han; John R. Wetterau; Evan B. Janovitz; Oliver P. Flint; Jean M. Whaley; William N. Washburn

The C-aryl glucoside 6 (dapagliflozin) was identified as a potent and selective hSGLT2 inhibitor which reduced blood glucose levels in a dose-dependent manner by as much as 55% in hyperglycemic streptozotocin (STZ) rats. These findings, combined with a favorable ADME profile, have prompted clinical evaluation of dapagliflozin for the treatment of type 2 diabetes.


Drug Metabolism and Disposition | 2010

In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans.

Mary T. Obermeier; Ming Yao; Ashish Khanna; Barry Koplowitz; Mingshe Zhu; Wenying Li; Bernard J. Komoroski; Sreeneeranj Kasichayanula; Lorell Discenza; William N. Washburn; Wei Meng; Bruce A. Ellsworth; Jean M. Whaley; William G. Humphreys

(2S,3R,4R,5S,6R)-2-(3-(4-Ethoxybenzyl)-4-chlorophenyl)-6-hydroxymethyl-tetrahydro-2H-pyran-3,4,5-triol (dapagliflozin; BMS-512148) is a potent sodium-glucose cotransporter type II inhibitor in animals and humans and is currently under development for the treatment of type 2 diabetes. The preclinical characterization of dapagliflozin, to allow compound selection and prediction of pharmacological and dispositional behavior in the clinic, involved Caco-2 cell permeability studies, cytochrome P450 (P450) inhibition and induction studies, P450 reaction phenotyping, metabolite identification in hepatocytes, and pharmacokinetics in rats, dogs, and monkeys. Dapagliflozin was found to have good permeability across Caco-2 cell membranes. It was found to be a substrate for P-glycoprotein (P-gp) but not a significant P-gp inhibitor. Dapagliflozin was not found to be an inhibitor or an inducer of human P450 enzymes. The in vitro metabolic profiles of dapagliflozin after incubation with hepatocytes from mice, rats, dogs, monkeys, and humans were qualitatively similar. Rat hepatocyte incubations showed the highest turnover, and dapagliflozin was most stable in human hepatocytes. Prominent in vitro metabolic pathways observed were glucuronidation, hydroxylation, and O-deethylation. Pharmacokinetic parameters for dapagliflozin in preclinical species revealed a compound with adequate oral exposure, clearance, and elimination half-life, consistent with the potential for single daily dosing in humans. The pharmacokinetics in humans after a single dose of 50 mg of [14C]dapagliflozin showed good exposure, low clearance, adequate half-life, and no metabolites with significant pharmacological activity or toxicological concern.


The Prostate | 2011

Drug safety is a barrier to the discovery and development of new androgen receptor antagonists

William R. Foster; Bruce D. Car; Hong Shi; Paul Levesque; Mary T. Obermeier; Jinping Gan; Joseph C. Arezzo; Stephanie S. Powlin; Joseph E. Dinchuk; Aaron Balog; Mark E. Salvati; Ricardo M. Attar; Marco M. Gottardis

Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands. The failure to discover new AR antagonists has occurred in the face of continued research; to enable progress, a clear understanding of the reasons for failure is required.


Cancer Research | 2009

Discovery of BMS-641988, a Novel and Potent Inhibitor of Androgen Receptor Signaling for the Treatment of Prostate Cancer

Ricardo M. Attar; Maria Jure-Kunkel; Aaron Balog; Mary Ellen Cvijic; Janet Dell-John; Cheryl A. Rizzo; Liang Schweizer; Thomas Spires; J. Suso Platero; Mary T. Obermeier; Weifang Shan; Mark E. Salvati; William R. Foster; Joseph E. Dinchuk; Shen-Jue Chen; Gregory D. Vite; Robert Kramer; Marco M. Gottardis

Despite an excellent initial response to first-line hormonal treatment, most patients with metastatic prostate cancer will succumb to a hormone-refractory form of the disease. Because these tumors are still dependent on a functional androgen receptor (AR), there is a need to find novel and more potent antiandrogens. While searching for small molecules that bind to the AR and inhibit its transcriptional activity, BMS-641988 was discovered. This novel antiandrogen showed an increased (>1 log) potency compared with the standard antiandrogen, bicalutamide, in both binding affinity to the AR and inhibition of AR-mediated transactivation in cell-based reporter assays. In mature rats, BMS-641988 strongly inhibited androgen-dependent growth of the ventral prostate and seminal vesicles. In the CWR-22-BMSLD1 human prostate cancer xenograft model, BMS-641988 showed increased efficacy over bicalutamide (average percent tumor growth inhibition >90% versus <50%), even at exposure levels of bicalutamide 3-fold greater than what can be attained in humans. Furthermore, BMS-641988 was efficacious in CWR-22-BMSLD1 tumors initially refractory to treatment with bicalutamide. BMS-641988 was highly efficacious in the LuCaP 23.1 human prostate xenograft model, inducing stasis throughout the approximately 30-day dosing. To explore the functional mechanisms of BMS-641988, gene expression profiling analysis was done on CWR-22-BMSLD1 xenograft models in mice. Treatment with BMS-641988 resulted in a global gene expression profile more similar to castration compared with that of bicalutamide. Overall, these data highlight that the unique preclinical profile of BMS-641988 may provide additional understanding for the hormonal treatment of prostate cancer.


Clinical Cancer Research | 2011

Phase I Dose-Escalation Study of the Novel Antiandrogen BMS-641988 in Patients with Castration-Resistant Prostate Cancer

Dana E. Rathkopf; Glenn Liu; Michael A. Carducci; Mario A. Eisenberger; Aseem Anand; Michael J. Morris; Susan F. Slovin; Yasutsuna Sasaki; Shunji Takahashi; Seiichiro Ozono; Nga Kit Eliza Fung; Shinta Cheng; Jinping Gan; Marco M. Gottardis; Mary T. Obermeier; Jyotsna Reddy; Steven Zhang; Blisse Vakkalagadda; Leila Alland; George Wilding; Howard I. Scher

Purpose: BMS-641988 is an androgen receptor antagonist with increased potency relative to bicalutamide in both in vitro and in vivo prostate cancer models. A first-in-man phase I study was conducted to define the safety and tolerability of oral BMS-641988 in patients with castration-resistant prostate cancer (CRPC). Experimental Design: Doses were escalated from 5 to 150 mg based on discrete pharmacokinetic parameters in cohorts of three to six subjects. After establishing safety with 20 mg of BMS-641988 in the United States, a companion study was opened in Japan to assess differences in drug metabolism between populations. Results: Sixty-one men with CRPC were treated with daily BMS-641988. The pharmacokinetics (PK) of BMS-641988 and its active metabolites were proportional to dose. One patient experienced an epileptic seizure at a dose of 60 mg administered twice. Despite achieving target drug exposures, antitumor activity was limited to one partial response. Seventeen of 23 evaluable patients (74%) exhibited stable disease on imaging (median 15 weeks; range 8–32), and 10 of 61 patients (16%) achieved a ≥30% decline in levels of prostate-specific antigen (PSA). Partial agonism was seen within the context of this study upon removal of the drug as evidenced by a decrease in PSA. Conclusions: Although the clinical outcomes of predominantly stable disease and partial agonism were similar to what was observed in the preclinical evaluation of the compound, the limited antitumor activity of BMS-641988 at therapeutic dose levels coupled with an episode of seizure activity led to study closure. Clin Cancer Res; 17(4); 880–7. ©2010 AACR.


Bioorganic & Medicinal Chemistry Letters | 2008

Identification and optimization of a novel series of [2.2.1]-oxabicyclo imide-based androgen receptor antagonists

Mark E. Salvati; Aaron Balog; Weifang Shan; Richard Rampulla; Soren Giese; Tom Mitt; Joseph A. Furch; Gregory D. Vite; Ricardo M. Attar; Maria Jure-Kunkel; Jieping Geng; Cheryl A. Rizzo; Marco M. Gottardis; Stanley R. Krystek; Jack Z. Gougoutas; Michael A. Galella; Mary T. Obermeier; Aberra Fura; Gamini Chandrasena

A novel series of [2.2.1]-oxabicyclo imide-based compounds were identified as potent antagonists of the androgen receptor. Molecular modeling and iterative drug design were applied to optimize this series. The lead compound [3aS-(3aalpha,4beta,5beta,7beta,7aalpha)]-4-(octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-iodobenzonitrile was shown to have potent in vivo efficacy after oral dosing in the CWR22 human prostate tumor xenograph model.


Drug Metabolism and Disposition | 2011

Plasma stability-dependent circulation of acyl glucuronide metabolites in humans: how circulating metabolite profiles of muraglitazar and peliglitazar can lead to misleading risk assessment.

Donglu Zhang; Nirmala Raghavan; Lifei Wang; Yongjun Xue; Mary T. Obermeier; Stephanie Y. Chen; Shiwei Tao; Hao Zhang; Peter T. W. Cheng; Wenying Li; Ragu Ramanathan; Zheng Yang; W. Griffith Humphreys

Muraglitazar and peliglitazar, two structural analogs differing by a methyl group, are dual peroxisome proliferator-activated receptor-α/γ activators. Both compounds were extensively metabolized in humans through acyl glucuronidation to form 1-O-β-acyl glucuronide (AG) metabolites as the major drug-related components in bile, representing at least 15 to 16% of the dose after oral administration. Peliglitazar AG was the major circulating metabolite, whereas muraglitazar AG was a very minor circulating metabolite in humans. Peliglitazar AG circulated at lower concentrations in animal species than in humans. Both compounds had a similar glucuronidation rate in UDP-glucuronic acid-fortified human liver microsomal incubations and a similar metabolism rate in human hepatocytes. Muraglitazar AG and peliglitazar AG were chemically synthesized and found to be similarly oxidized through hydroxylation and O-demethylation in NADPH-fortified human liver microsomal incubations. Peliglitazar AG had a greater stability than muraglitazar AG in incubations in buffer, rat, or human plasma (pH 7.4). Incubations of muraglitazar AG or peliglitazar AG in plasma produced more aglycon than acyl migration products compared with incubations in the buffer. These data suggested that the difference in plasma stability, not differences in intrinsic formation, direct excretion, or further oxidation of muraglitazar AG or peliglitazar AG, contributed to the observed difference in the circulation of these AG metabolites in humans. The study demonstrated the difficulty in doing risk assessment based on metabolite exposure in plasma because the more reactive muraglitazar AG would not have triggered a threshold of concern based on the recent U.S. Food and Drug Administration guidance on Metabolites in Safety Testing, whereas the more stable peliglitazar AG would have.


Journal of Medicinal Chemistry | 2016

Small Molecule Reversible Inhibitors of Bruton’s Tyrosine Kinase (BTK): Structure–Activity Relationships Leading to the Identification of 7-(2-Hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide (BMS-935177)

George V. De Lucca; Qing Shi; Qingjie Liu; Douglas G. Batt; Myra Beaudoin Bertrand; Rick Rampulla; Arvind Mathur; Lorell Discenza; Celia D’Arienzo; Jun Dai; Mary T. Obermeier; Rodney Vickery; Yingru Zhang; Zheng Yang; Punit Marathe; Andrew J. Tebben; Jodi K. Muckelbauer; ChiehYing J. Chang; Huiping Zhang; Kathleen M. Gillooly; Tracy L. Taylor; Mark A. Pattoli; Stacey Skala; Daniel W. Kukral; Kim W. McIntyre; Luisa Salter-Cid; Aberra Fura; James R. Burke; Joel C. Barrish; Percy H. Carter

Brutons tyrosine kinase (BTK) belongs to the TEC family of nonreceptor tyrosine kinases and plays a critical role in multiple cell types responsible for numerous autoimmune diseases. This article will detail the structure-activity relationships (SARs) leading to a novel second generation series of potent and selective reversible carbazole inhibitors of BTK. With an excellent pharmacokinetic profile as well as demonstrated in vivo activity and an acceptable safety profile, 7-(2-hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide 6 (BMS-935177) was selected to advance into clinical development.


Bioanalysis | 2012

A bioanalytical strategy utilizing dried blood spot sampling and LC-MS/MS in discovery toxicology studies

Lorell Discenza; Mary T. Obermeier; Richard A. Westhouse; Timothy Olah; Celia D’Arienzo

BACKGROUND & METHOD The small sample volumes characteristic to dried blood spot (DBS) sampling enabled us to right-shift the linear dynamic range of an LC-MS/MS plasma assay tenfold and eliminate the need for extensive sample dilution in support of three discovery toxicology studies in which both plasma and DBS samples were collected. With the right-shifted DBS assay range, no DBS study samples required dilution, while all of the plasma samples were diluted 5-50-fold. RESULTS DBS standard curves from 78-80,000 nM were linear, the performance of the curve and QC samples was within acceptable discovery-assay criteria and individual plasma and DBS data were comparable. Linear correlations of C(max) and AUC derived from DBS and plasma data resulted in R(2) > 0.9. CONCLUSION This bioanalytical strategy represents a benefit to the bioanalyst that can expedite the return of data and minimize the potential for error and variability that can result from extensive dilutions of study samples.


Xenobiotica | 2003

Oxidative activation of acylguanidine prodrugs: intestinal presystemic activation in rats limits absorption and can be inhibited by co-administration of ketoconazole

W. G. Humphreys; Mary T. Obermeier; Saeho Chong; S. D. Kimball; Jagabandhu Das; Ping Chen; Robert V. Moquin; Wen-Ching Han; R. Gedamke; Ronald E. White; R. A. Morrison

1 The disposition of acyl prodrugs was studied to improve the delivery of a guanidine-containing parent compound with poor membrane permeability and poor absorption. 2. The prodrugs were evaluated in vitro and in vivo for conversion to drug. Prodrugs were evaluated for hydrolytic or oxidative bioactivation in intestinal homogenate and rat liver S9 or microsomes. The disposition of the prodrugs in vivo was monitored in bile duct-cannulated rats. 3. Compounds with n -alkylacyl groups were efficiently bioactivated, but were hydrolysed before absorption. 4. Hydrolytic bioactivation could be blocked in vitro by branching in the alkyl chain. These compounds showed modest improvements in absorption, despite favourable permeability. Experiments with liver microsomes demonstrated efficient NADPH-dependent oxidative bioactivation, which was proposed to occur through a CYP-mediated side chain oxidation followed by cyclization and release of parent compound. Ketoconazole co-administration yielded approximately a twofold increase in absorption. 5. The hydrolytically stable prodrugs were successful in increasing absorption of parent drug and were efficiently bioactivated, but they did not yield increased systemic levels of drug.

Collaboration


Dive into the Mary T. Obermeier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge