Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loren A. Honaas is active.

Publication


Featured researches published by Loren A. Honaas.


Weed Science | 2012

The Parasitic Plant Genome Project: New Tools for Understanding the Biology of Orobanche and Striga

James H. Westwood; Claude W. dePamphilis; Malay Das; Mónica Fernández-Aparicio; Loren A. Honaas; Michael P. Timko; Eric Wafula; Norman J. Wickett; John I. Yoder

Abstract The Parasitic Plant Genome Project has sequenced transcripts from three parasitic species and a nonparasitic relative in the Orobanchaceae with the goal of understanding genetic changes associated with parasitism. The species studied span the trophic spectrum from free-living nonparasite to obligate holoparasite. Parasitic species used were Triphysaria versicolor, a photosynthetically competent species that opportunistically parasitizes roots of neighboring plants; Striga hermonthica, a hemiparasite that has an obligate need for a host; and Orobanche aegyptiaca, a holoparasite with absolute nutritional dependence on a host. Lindenbergia philippensis represents the closest nonparasite sister group to the parasitic Orobanchaceae and was included for comparative purposes. Tissues for transcriptome sequencing from each plant were gathered to identify expressed genes for key life stages from seed conditioning through anthesis. Two of the species studied, S. hermonthica and O. aegyptiaca, are economically important weeds and the data generated by this project are expected to aid in research and control of these species and their relatives. The sequences generated through this project will provide an abundant resource of molecular markers for understanding population dynamics, as well as provide insight into the biology of parasitism and advance progress toward understanding parasite virulence and host resistance mechanisms. In addition, the sequences provide important information on target sites for herbicide action or other novel control strategies such as trans-specific gene silencing. Nomenclature: Egyptian broomrape, Orobanche aegyptiaca (Pers.) (Syn. Phelipanche aegyptiaca) ORAAE; Lindenbergia philippensis (Cham. & Schltdl.) Benth. LINPH; yellowbeak owls-clover, Triphysaria versicolor (Fisch. & C.A. Mey) TRVEV; purple witchweed, Striga hermonthica, (Del.) Benth. STRHE.


Molecular Biology and Evolution | 2015

Comparative Transcriptome Analyses Reveal Core Parasitism Genes and Suggest Gene Duplication and Repurposing as Sources of Structural Novelty

Zhenzhen Yang; Eric Wafula; Loren A. Honaas; Huiting Zhang; Malay Das; Mónica Fernández-Aparicio; Kan Huang; Pradeepa C. G. Bandaranayake; Biao Wu; Joshua P. Der; Christopher R. Clarke; Paula E. Ralph; Lena Landherr; Naomi Altman; Michael P. Timko; John I. Yoder; James H. Westwood; Claude W. dePamphilis

The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative “parasitism genes.” Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria.


PLOS ONE | 2016

Selecting superior de novo transcriptome assemblies: Lessons learned by leveraging the best plant genome

Loren A. Honaas; Eric Wafula; Norman J. Wickett; Joshua P. Der; Yeting Zhang; Patrick P. Edger; Naomi Altman; J. Chris Pires; Jim Leebens-Mack; Claude W. dePamphilis

Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1) proportion of reads mapping to an assembly 2) recovery of conserved, widely expressed genes, 3) N50 length statistics, and 4) the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation.


BMC Plant Biology | 2013

Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

Loren A. Honaas; Eric Wafula; Zhenzhen Yang; Joshua P. Der; Norman J. Wickett; Naomi Altman; Christopher Taylor; John I. Yoder; Michael P. Timko; James H. Westwood; Claude W. dePamphilis

BackgroundOrobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts.ResultsThe interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface.ConclusionsLaser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions.


Genome Biology and Evolution | 2016

Detecting and Characterizing the Highly Divergent Plastid Genome of the Nonphotosynthetic Parasitic Plant Hydnora visseri (Hydnoraceae)

Julia Naumann; Joshua P. Der; Eric Wafula; Samuel S. Jones; Sarah T. Wagner; Loren A. Honaas; Paula E. Ralph; Jay F. Bolin; Erika Maass; Christoph Neinhuis; Stefan Wanke; Claude W. dePamphilis

Plastid genomes of photosynthetic flowering plants are usually highly conserved in both structure and gene content. However, the plastomes of parasitic and mycoheterotrophic plants may be released from selective constraint due to the reduction or loss of photosynthetic ability. Here we present the greatly reduced and highly divergent, yet functional, plastome of the nonphotosynthetic holoparasite Hydnora visseri (Hydnoraceae, Piperales). The plastome is 27 kb in length, with 24 genes encoding ribosomal proteins, ribosomal RNAs, tRNAs, and a few nonbioenergetic genes, but no genes related to photosynthesis. The inverted repeat and the small single copy region are only approximately 1.5 kb, and intergenic regions have been drastically reduced. Despite extreme reduction, gene order and orientation are highly similar to the plastome of Piper cenocladum, a related photosynthetic plant in Piperales. Gene sequences in Hydnora are highly divergent and several complementary approaches using the highest possible sensitivity were required for identification and annotation of this plastome. Active transcription is detected for all of the protein-coding genes in the plastid genome, and one of two introns is appropriately spliced out of rps12 transcripts. The whole-genome shotgun read depth is 1,400× coverage for the plastome, whereas the mitochondrial genome is covered at 40× and the nuclear genome at 2×. Despite the extreme reduction of the genome and high sequence divergence, the presence of syntenic, long transcriptionally active open-reading frames with distant similarity to other plastid genomes and a high plastome stoichiometry relative to the mitochondrial and nuclear genomes suggests that the plastome remains functional in H. visseri. A four-stage model of gene reduction, including the potential for complete plastome loss, is proposed to account for the range of plastid genomes in nonphotosynthetic plants.


BMC Evolutionary Biology | 2013

Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species

Yeting Zhang; Mónica Fernández-Aparicio; Eric Wafula; Malay Das; Yuannian Jiao; Norman J. Wickett; Loren A. Honaas; Paula E. Ralph; Martin F. Wojciechowski; Michael P. Timko; John I. Yoder; James H. Westwood; Claude W. dePamphilis

BackgroundParasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants and extract nutrients and water. As a result of their direct plant-plant connections with their host plant, parasitic plants have special opportunities for horizontal gene transfer, the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as recipients and donors of horizontal gene transfer (HGT), but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown.ResultsHere we show that a gene encoding albumin 1 KNOTTIN-like protein, closely related to the albumin 1 genes only known from papilionoid legumes, where they serve dual roles as food storage and insect toxin, was found in Phelipanche aegyptiaca and related parasitic species of family Orobanchaceae, and was likely acquired by a Phelipanche ancestor via HGT from a legume host based on phylogenetic analyses. The KNOTTINs are well known for their unique “disulfide through disulfide knot” structure and have been extensively studied in various contexts, including drug design. Genomic sequences from nine related parasite species were obtained, and 3D protein structure simulation tests and evolutionary constraint analyses were performed. The parasite gene we identified here retains the intron structure, six highly conserved cysteine residues necessary to form a KNOTTIN protein, and displays levels of purifying selection like those seen in legumes. The albumin 1 xenogene has evolved through >150 speciation events over ca. 16 million years, forming a small family of differentially expressed genes that may confer novel functions in the parasites. Moreover, further data show that a distantly related parasitic plant, Cuscuta, obtained two copies of albumin 1 KNOTTIN-like genes from legumes through a separate HGT event, suggesting that legume KNOTTIN structures have been repeatedly co-opted by parasitic plants.ConclusionsThe HGT-derived albumins in Phelipanche represent a novel example of how plants can acquire genes from other plants via HGT that then go on to duplicate, evolve, and retain the specialized features required to perform a unique host-derived function.


BMC Plant Biology | 2014

Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls

Thomas W. McCarthy; Joshua P. Der; Loren A. Honaas; Claude W. dePamphilis; Charles T. Anderson

BackgroundPectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families.ResultsContrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases, polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like proteins, β-1,4-galactan β-1,4-galactosyltransferases, rhamnogalacturonan II xylosyltransferases, and pectin acetylesterases appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in the xylogalacturonan xylosyltransferase, rhamnogalacturonan I arabinosyltransferase, pectin methylesterase inhibitor, or polygalacturonase inhibitor protein families.ConclusionsSeveral gene families related to the production and modification of pectins in plants appear to have multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence of multiple members of these families even before the divergence of other important cell wall-related genes, such as cellulose synthases, suggests a more complex role than previously suspected for pectins in the evolution of land plants. The presence of relatively small pectin-related gene families in Physcomitrella as compared to Arabidopsis makes it an attractive target for analysis of the functions of pectins in cell walls. In contrast, the absence of genes in Physcomitrella for some families suggests that certain pectin modifications, such as homogalacturonan xylosylation, arose later during land plant evolution.


Molecular Biology Reports | 2013

Application of qRT-PCR and RNA-Seq analysis for the identification of housekeeping genes useful for normalization of gene expression values during Striga hermonthica development

Mónica Fernández-Aparicio; Kan Huang; Eric Wafula; Loren A. Honaas; Norman J. Wickett; Michael P. Timko; Claude W. dePamphilis; John I. Yoder; James H. Westwood

Striga is a root parasitic weed that attacks many of the staple crops in Africa, India and Southeast Asia, inflicting tremendous losses in yield and for which there are few effective control measures. Studies of parasitic plant virulence and host resistance will be greatly facilitated by the recent emergence of genomic resources that include extensive transcriptome sequence datasets spanning all life stages of S. hermonthica. Functional characterization of Striga genes will require detailed analyses of gene expression patterns. Quantitative real-time PCR is a powerful tool for quantifying gene expression, but correct normalization of expression levels requires identification of control genes that have stable expression across tissues and life stages. Since no S. hermonthica housekeeping genes have been established for this purpose, we evaluated the suitability of six candidate housekeeping genes across key life stages of S. hermonthica from seed conditioning to flower initiation using qRT-PCR and high-throughput cDNA sequencing. Based on gene expression analysis by qRT-PCR and RNA-Seq across heterogeneous Striga life stages, we determined that using the combination of three genes, UBQ1, PP2A and TUB1 provides the best normalization for gene expression throughout the parasitic life cycle. The housekeeping genes characterized here provide robust standards that will facilitate powerful descriptions of parasite gene expression patterns.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation

Zhenzhen Yang; Yeting Zhang; Eric Wafula; Loren A. Honaas; Paula E. Ralph; Samuel S. Jones; Christopher R. Clarke; Siming Liu; Chun Su; Huiting Zhang; Naomi Altman; Stephan C. Schuster; Michael P. Timko; John I. Yoder; James H. Westwood; Claude W. dePamphilis

Significance Horizontal gene transfer (HGT) is the nonsexual transfer and genomic integration of genetic materials between organisms. In eukaryotes, HGT appears rare, but parasitic plants may be exceptions, as haustorial feeding connections between parasites and their hosts provide intimate cellular contacts that could facilitate DNA transfer between unrelated species. Through analysis of genome-scale data, we identified >50 expressed and likely functional HGT events in one family of parasitic plants. HGT reflected parasite preferences for different host plants and was much more frequent in plants with increasing parasitic dependency. HGT was strongly biased toward expression and protein types likely to contribute to haustorial function, suggesting that functional HGT of host genes may play an important role in adaptive evolution of parasites. Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia. Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium—the organ of parasitic plants—and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants.


PLOS ONE | 2017

Stealth dissemination of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma

Gary A. Clawson; Gail L. Matters; Ping Xin; Christopher O. McGovern; Eric Wafula; Claude W. dePamphilis; Morgan Meckley; Joyce Wong; Luke Stewart; Christopher D’Jamoos; Naomi Altman; Yuka Imamura Kawasawa; Zhen Du; Loren A. Honaas; Thomas Abraham

Here we describe isolation and characterization of macrophage-tumor cell fusions (MTFs) from the blood of pancreatic ductal adenocarcinoma (PDAC) patients. The MTFs were generally aneuploidy, and immunophenotypic characterizations showed that the MTFs express markers characteristic of PDAC and stem cells, as well as M2-polarized macrophages. Single cell RNASeq analyses showed that the MTFs express many transcripts implicated in cancer progression, LINE1 retrotransposons, and very high levels of several long non-coding transcripts involved in metastasis (such as MALAT1). When cultured MTFs were transplanted orthotopically into mouse pancreas, they grew as obvious well-differentiated islands of cells, but they also disseminated widely throughout multiple tissues in “stealth” fashion. They were found distributed throughout multiple organs at 4, 8, or 12 weeks after transplantation (including liver, spleen, lung), occurring as single cells or small groups of cells, without formation of obvious tumors or any apparent progression over the 4 to 12 week period. We suggest that MTFs form continually during PDAC development, and that they disseminate early in cancer progression, forming “niches” at distant sites for subsequent colonization by metastasis-initiating cells.

Collaboration


Dive into the Loren A. Honaas's collaboration.

Top Co-Authors

Avatar

Claude W. dePamphilis

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Eric Wafula

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John I. Yoder

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomi Altman

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua P. Der

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula E. Ralph

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge