Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorenzo Battini is active.

Publication


Featured researches published by Lorenzo Battini.


Human Molecular Genetics | 2008

Loss of polycystin-1 causes centrosome amplification and genomic instability

Lorenzo Battini; Salvador Macip; Elena Fedorova; Steven Dikman; Stefan Somlo; Cristina Montagna; G. Luca Gusella

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenetic disease predominantly caused by alteration or dysregulation of the PKD1 gene, which encodes polycystin-1 (PC1). The disease is characterized by the progressive expansion of bilateral fluid-filled renal cysts that ultimately lead to renal failure. Individual cysts, even within patients with germline mutations, are genetically heterogeneous, displaying diverse chromosomal abnormalities. To date, the molecular mechanisms responsible for this genetic heterogeneity remain unknown. Using a lentiviral-mediated siRNA expression model of Pkd1 hypomorphism, we show that loss of PC1 function is sufficient to produce centrosome amplification and multipolar spindle formation. These events lead to genomic instability characterized by gross polyploidism and mitotic catastrophe. Following these dramatic early changes, the cell population rapidly converges toward a stable ploidy in which centrosome amplification is significantly decreased, though cytological abnormalities such as micronucleation, chromatin bridges and aneuploidy remain common. In agreement with our in vitro findings, we provide the first in vivo evidence that significant centrosome amplification occurs in kidneys from conditional Pkd1 knockout mice at early and late time during the disease progression as well as in human ADPKD patients. These findings establish a novel function of PC1 in ADPKD pathogenesis and a genetic mechanism that may underlie the intrafamilial variability of ADPKD progression.


Journal of Immunology | 2004

Specific recognition of the viral protein UL18 by CD85j/LIR-1/ILT2 on CD8+ T cells mediates the non-MHC-restricted lysis of human cytomegalovirus-infected cells

Daniele Saverino; Fabio Ghiotto; Andrea Merlo; Silvia Bruno; Lorenzo Battini; Marzia Occhino; Massimo Maffei; Claudya Tenca; Stefano Pileri; Lucia Baldi; Marina Fabbi; Angela Bachi; Amleto De Santanna; Carlo E. Grossi; Ermanno Ciccone

Immune evasion mechanisms of human CMV are known; however, the immune control of infection remains poorly elucidated. We show that interaction between the viral protein UL18 on infected cells and the invariant receptor CD85j/LIR-1/ILT2 expressed on CTL is relevant for the control of infection. Resting and activated CD8+ T cells lysed UL18 expressing cells, whereas cells infected with CMV defective for UL18 were not killed. Lysis was not dependent on CD8+ T cell Ag specificity, MHC-unrestricted and specifically blocked by anti-CD85j and anti-UL18 mAb. Moreover, soluble recombinant UL18Fc immunoprecipitated CD85j from T cells. Activation is mediated by CD85j and its pathway is unrelated to CD3/TCR engagement. UL18 is detected in immunocompromised patients with productive infection and the mechanism used in vivo by human CMV to ensure survival of the immunocompetent host may be mediated by activation signals delivered by infected cells to T lymphocytes via UL18/CD85j interactions.


PLOS ONE | 2012

Receptor Heteromerization Expands the Repertoire of Cannabinoid Signaling in Rodent Neurons

Raphael Rozenfeld; Ittai Bushlin; Ivone Gomes; Nikos Tzavaras; Achla Gupta; Susana R. Neves; Lorenzo Battini; G. Luca Gusella; Alexander Lachmann; Avi Ma'ayan; Robert D. Blitzer; Lakshmi A. Devi

A fundamental question in G protein coupled receptor biology is how a single ligand acting at a specific receptor is able to induce a range of signaling that results in a variety of physiological responses. We focused on Type 1 cannabinoid receptor (CB1R) as a model GPCR involved in a variety of processes spanning from analgesia and euphoria to neuronal development, survival and differentiation. We examined receptor dimerization as a possible mechanism underlying expanded signaling responses by a single ligand and focused on interactions between CB1R and delta opioid receptor (DOR). Using co-immunoprecipitation assays as well as analysis of changes in receptor subcellular localization upon co-expression, we show that CB1R and DOR form receptor heteromers. We find that heteromerization affects receptor signaling since the potency of the CB1R ligand to stimulate G-protein activity is increased in the absence of DOR, suggesting that the decrease in CB1R activity in the presence of DOR could, at least in part, be due to heteromerization. We also find that the decrease in activity is associated with enhanced PLC-dependent recruitment of arrestin3 to the CB1R-DOR complex, suggesting that interaction with DOR enhances arrestin-mediated CB1R desensitization. Additionally, presence of DOR facilitates signaling via a new CB1R-mediated anti-apoptotic pathway leading to enhanced neuronal survival. Taken together, these results support a role for CB1R-DOR heteromerization in diversification of endocannabinoid signaling and highlight the importance of heteromer-directed signal trafficking in enhancing the repertoire of GPCR signaling.


Clinical and Vaccine Immunology | 2005

Inhibitory Receptors CD85j, LAIR-1, and CD152 Down-Regulate Immunoglobulin and Cytokine Production by Human B Lymphocytes

Andrea Merlo; Claudya Tenca; Franco Fais; Lorenzo Battini; Ermanno Ciccone; Carlo E. Grossi; Daniele Saverino

ABSTRACT Class switching consists in the substitution of the heavy-chain constant region of immunoglobulin M (IgM) with that of IgG, IgA, or IgE. This enables antibodies to acquire new effector functions that are crucial to combat invading pathogens. Class switching usually requires engagement of CD40 on B cells by CD40 ligand (CD40L) on antigen-activated CD4+ T cells and the production of cytokines. The process must be regulated tightly because abnormal IgG and IgA production favors the onset of autoimmunity, whereas increased switching to IgE leads to atopy. These inflammatory disorders can be triggered or exacerbated by costimulatory signals. Although thoroughly investigated on T cells, the roles of the inhibitory receptors CD85j, LAIR-1, and CD152 on B-cell functions have not been fully elucidated. In this study we show that cross-linking of the B-cell inhibitory receptors by specific monoclonal antibodies inhibits IgG and IgE production, reduces the percentage of IgG- and IgE-expressing B cells, and down-regulates interleukin 8 (IL-8), IL-10, and tumor necrosis factor alpha production. These effects were demonstrated using different B-cell stimulatory pathways (recall antigens, CD40L-transfected cells plus IL-4, and lipopolysaccharide plus IL-4). It thus appears that CD85j, LAIR-1, and CD152 play a central role for the control of IL-4-driven isotype switching.


American Journal of Physiology-renal Physiology | 2008

Mechanoregulation of intracellular Ca2+ in human autosomal recessive polycystic kidney disease cyst-lining renal epithelial cells

Rajeev Rohatgi; Lorenzo Battini; Paul Kim; Sharon Israeli; Patricia D. Wilson; G. Luca Gusella; Lisa M. Satlin

Mutations of cilia-expressed proteins are associated with an attenuated shear-induced increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in renal epithelial cell lines derived from murine models of autosomal recessive polycystic kidney disease (ARPKD). We hypothesized that human ARPKD cyst-lining renal epithelial cells also exhibited dysregulated mechanosensation. To test this, conditionally immortalized cell lines derived from human fetal ARPKD cyst-lining (pool and clone 5E) cell lines with low levels of fibrocystin/polyductin expression and age-matched normal collecting tubule [human fetal collecting tubule (HFCT) pool and clone 2C] cell lines were grown in culture, loaded with a Ca(2+) indicator dye, and subjected to laminar shear. Clonal cell lines were derived from single cells present in pools of cells from cyst-lining and collecting tubules, microdissected from human kidney. Resting and peak [Ca(2+)](i) were similar between ARPKD 5E and pool, and HFCT 2C and pool; however, the flow-induced peak [Ca(2+)](i) was greater in ARPKD 5E (700 +/- 87 nM, n = 21) than in HFCT 2C (315 +/- 58 nM, n = 12; P < 0.01) cells. ARPKD 5E cells treated with Gd(3+), an inhibitor of nonselective cation channels, inhibited but did not abolish the shear-induced [Ca(2+)](i) transient. Cilia were approximately 20% shorter in ARPKD than HFCT cells, but no difference in ciliary localization or total cellular expression of polycystin-2, a mechanosenory Gd(3+)-sensitive cation channel, was detected between ARPKD and HFCT cells. The intracellular Ca(2+) stores were similar between cells. In summary, human ARPKD cells exhibit an exaggerated Gd(3+)-sensitive mechano-induced Ca(2+) response compared with controls; whether this represents dysregulated polycystin-2 activity in ARPKD cells remains to be explored.


Nephron Physiology | 2011

Fluid shear stress induces renal epithelial gene expression through polycystin-2-dependent trafficking of extracellular regulated kinase.

Daniel Flores; Lorenzo Battini; G. Luca Gusella; Rajeev Rohatgi

Background: The cilium and cilial proteins have emerged as principal mechanosensors of renal epithelial cells responsible for translating mechanical forces into intracellular signals. Polycystin-2 (PC-2), a cilial protein, regulates flow/shear-induced changes in intracellular Ca2+ ([Ca2+]i) and recently has been implicated in the regulation of mitogen-activated protein (MAP) kinases. We hypothesize that fluid shear stress (FSS) activates PC-2 which regulates MAP kinase and, in turn, induces MAP kinase-dependent gene expression, specifically, monocyte chemoattractant protein-1 (MCP-1). Methods: To test this, PC-2 expression was constitutively reduced in a murine inner medullary collecting duct (IMCD3) cell line, and the expression of FSS-induced MCP-1 expression and MAP kinase signaling compared between the parental (PC-2-expressing) and PC-2-deficient IMCD3 cells. Results: FSS induces MAP kinase signaling and downstream MCP-1 mRNA expression in wild-type IMCD3 cells, while inhibitors of MAP kinase prevented the FSS-induced MCP-1 mRNA response. In contradistinction, FSS did not induce MCP-1 mRNA expression in PC-2-deficient cells, but did increase activation of the upstream MAP kinases. Wild-type cells exposed to FSS augmented the nuclear abundance of activated MAP kinase while PC-2-deficient cells did not. Conclusions: PC-2 regulates FSS-induced MAP kinase trafficking into the nucleus of CD cells.


Journal of Gene Medicine | 2006

Lentiviral gene delivery to CNS by spinal intrathecal administration to neonatal mice

Elena Fedorova; Lorenzo Battini; Ainu Prakash-Cheng; Daniele Marras; G. Luca Gusella

Direct injection of lentivectors into the central nervous system (CNS) mostly results in localized parenchymal transgene expression. Intrathecal gene delivery into the spinal canal may produce a wider dissemination of the transgene and allow diffusion of secreted transgenic proteins throughout the cerebrospinal fluid (CSF). Herein, we analyze the distribution and expression of LacZ and SEAP transgenes following the intrathecal delivery of lentivectors into the spinal canal.


American Journal of Physiology-renal Physiology | 2012

Prostaglandin E2 mediates proliferation and chloride secretion in ADPKD cystic renal epithelia

Yu Liu; Madhumitha Rajagopal; Kim Lee; Lorenzo Battini; Daniel Flores; G. Luca Gusella; Alan C. Pao; Rajeev Rohatgi

Prostaglandin E(2) (PGE(2)) contributes to cystogenesis in genetically nonorthologous models of autosomal dominant polycystic kidney disease (ADPKD). However, it remains unknown whether PGE(2) induces the classic features of cystic epithelia in genetically orthologous models of ADPKD. We hypothesized that, in ADPKD epithelia, PGE(2) induces proliferation and chloride (Cl(-)) secretion, two archetypal phenotypic features of ADPKD. To test this hypothesis, proliferation and Cl(-) secretion were measured in renal epithelial cells deficient in polycystin-1 (PC-1). PC-1-deficient cells increased in cell number (proliferated) faster than PC-1-replete cells, and this proliferative advantage was abrogated by cyclooxygenase inhibition, indicating a role for PGE(2) in cell proliferation. Exogenous administration of PGE(2) increased proliferation of PC-1-deficient cells by 38.8 ± 5.2% (P < 0.05) but inhibited the growth of PC-1-replete control cells by 49.4 ± 1.9% (P < 0.05). Next, we tested whether PGE(2)-specific E prostanoid (EP) receptor agonists induce intracellular cAMP and downstream β-catenin activation. PGE(2) and EP4 receptor agonism (TCS 2510) increased intracellular cAMP concentration and the abundance of active β-catenin in PC-1-deficient cells, suggesting a mechanism for PGE(2)-mediated proliferation. Consistent with this hypothesis, antagonizing EP4 receptors reverted the growth advantage of PC-1-deficient cells, implicating a central role for the EP4 receptor in proliferation. To test whether PGE(2)-dependent Cl(-) secretion is also enhanced in PC-1-deficient cells, we used an Ussing chamber to measure short-circuit current (I(sc)). Addition of PGE(2) induced a fivefold higher increase in I(sc) in PC-1-deficient cells compared with PC-1-replete cells. This PGE(2)-induced increase in I(sc) in PC-1-deficient cells was blocked by CFTR-172 and flufenamic acid, indicating that PGE(2) activates CFTR and calcium-activated Cl(-) channels. In conclusion, PGE(2) activates aberrant signaling pathways in PC-1-deficient epithelia that contribute to the proliferative and secretory phenotype characteristic of ADPKD and suggests a therapeutic role for PGE(2) inhibition and EP4 receptor antagonism.


Biochimica et Biophysica Acta | 2011

Cilium, centrosome and cell cycle regulation in polycystic kidney disease

Kyung Lee; Lorenzo Battini; G. Luca Gusella

Polycystic kidney disease is the defining condition of a group of common life-threatening genetic disorders characterized by the bilateral formation and progressive expansion of renal cysts that lead to end stage kidney disease. Although a large body of information has been acquired in the past years about the cellular functions that characterize the cystic cells, the mechanisms triggering the cystogenic conversion are just starting to emerge. Recent findings link defects in ciliary functions, planar cell polarity pathway, and centrosome integrity in early cystic development. Many of the signals dysregulated during cystogenesis may converge on the centrosome for its central function as a structural support for cilia formation and a coordinator of protein trafficking, polarity, and cell division. Here, we will discuss the contribution of proliferation, cilium and planar cell polarity to the cystic signal and will analyze in particular the possible role that the basal bodies/centrosome may play in the cystogenetic mechanisms. This article is part of a Special Issue entitled: Polycystic Kidney Disease.


Journal of Immunology | 2008

Human Cytomegalovirus Regulates Surface Expression of the Viral Protein UL18 by Means of Two Motifs Present in the Cytoplasmic Tail

Massimo Maffei; Fabio Ghiotto; Marzia Occhino; María Rosa Bono; Amleto De Santanna; Lorenzo Battini; G. Luca Gusella; Franco Fais; Silvia Bruno; Ermanno Ciccone

UL18 is a trans-membrane viral protein expressed on human cytomegalovirus (HCMV)-infected cells, and its surface expression determines the interaction of infected cells with lymphocytes expressing the CD85j (LIR-1/ILT2) receptor. We previously showed that the UL18–CD85j interaction elicits activation of T lymphocytes. However, in in vitro cell models UL18 displays mostly undetectable surface expression. Thus, we asked how surface expression of UL18 is regulated. Domain-swapping experiments and construction of specific mutants demonstrated that two motifs on its cytoplasmic tail, homologous to YXXΦ and KKXX consensus sequences, respectively, are responsible for impairing UL18 surface expression. However, the presence of the whole HCMV genome, granted by HCMV infection of human fibroblasts, restored surface expression of either UL18 or chimeric proteins carrying the UL18 cytoplasmic tail, starting from the third day after infection. It is of note that the two motifs responsible for cytoplasmic retention are identical in all 17 HCMV strains examined. We disclosed a control mechanism used by the HCMV to regulate the availability of UL18 on the infected-cell surface to allow interaction with its ligand on T and NK cells.

Collaboration


Dive into the Lorenzo Battini's collaboration.

Top Co-Authors

Avatar

G. Luca Gusella

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajeev Rohatgi

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge