Lorna S. Ehrlich
Stony Brook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorna S. Ehrlich.
Nature Structural & Molecular Biology | 1996
Cory Momany; Ladislau C. Kovari; Andrew Prongay; Walter Keller; Rossitza K. Gitti; Brian M. Lee; Alexander E. Gorbalenya; Liang Tong; Jan McClure; Lorna S. Ehrlich; Michael F. Summers; Carol A. Carter; Michael G. Rossmann
X-ray diffraction analysis of a human immunodeficiency virus (HIV-1) capsid (CA) protein shows that each monomer within the dimer consists of seven α-helices, five of which are arranged in a coiled coil-like structure. Sequence assignments were made for two of the helices, and tentative connectivity of the remainder of the protein was confirmed by the recent solution structure of a monomeric N-terminal fragment. The C-terminal third of the protein is mostly disordered in the crystal. The longest helices in the coiled coil-like structure are separated by a long, highly antigenic peptide that includes the binding site of an antibody fragment complexed with CA in the crystal. The site of binding of the Fab, the position of the antigenic loop and the site of cleavage between the matrix protein and CA establish the side of the dimer that would be on the exterior of the retroviral core.
Annual Review of Microbiology | 2008
Carol A. Carter; Lorna S. Ehrlich
HIV infection of macrophages is a critically important component of viral pathogenesis and progression to AIDS. Although the virus follows the same life cycle in macrophages and T lymphocytes, several aspects of the virus-host relationship are unique to macrophage infection. Examples of these are the long-term persistence of productive infection, sustained by the absence of cell death, and the ability of progeny virus to bud into and accumulate in endocytic compartments designated multivesicular bodies (MVBs). Recently, the hypothesis that viral exploitation of the macrophage endocytic machinery is responsible for perpetuating the chronic state of infection unique to this cell type has been challenged in several independent studies employing a variety of experimental strategies. This review examines the evidence supporting and refuting the canonical hypothesis and highlights recently identified cellular factors that may contribute to the unique aspects of the HIV-macrophage interaction.
Biophysical Journal | 2001
Lorna S. Ehrlich; Tianbo Liu; Suzanne Scarlata; Benjamin Chu; Carol A. Carter
The viral genome and replicative enzymes of the human immunodeficiency virus are encased in a shell consisting of assembled mature capsid protein (CA). The core shell is a stable, effective protective barrier, but is also poised for dissolution on cue to allow transmission of the viral genome into its new host. In this study, static light scattering (SLS) and dynamic light scattering (DLS) were used to examine the entire range of the CA protein response to an environmental cue (pH). The CA protein assembled tubular structures as previously reported but also was capable of assembling spheres, depending on the pH of the protein solution. The switch from formation of one to the other occurred within a very narrow physiological pH range (i.e., pH 7.0 to pH 6.8). Below this range, only dimers were detected. Above this range, the previously described tubular structures were detected. The ability of the CA protein to form a spherical structure that is detectable by DLS but not by electron microscopy indicates that some assemblages are inherently sensitive to perturbation. The dimers in equilibrium with these assemblages exhibited distinct conformations: Dimers in equilibrium with the spherical form exhibited a compact conformation. Dimers in equilibrium with the rod-like form had an extended conformation. Thus, the CA protein possesses the inherent ability to form metastable structures, the morphology of which is regulated by an environmentally-sensitive molecular switch. Such metastable structures may exist as transient intermediates during the assembly and/or disassembly of the virus core.
Journal of Virology | 2003
A. Goff; Lorna S. Ehrlich; Stanley N. Cohen; Carol A. Carter
ABSTRACT The structural precursor polyprotein of human immunodeficiency virus type 1, Pr55gag, contains a proline-rich motif (PTAP) called the “late domain” in its C-terminal p6 region that directs release of mature virus-like particles (VLPs) from the plasma membranes of gag-transfected COS-1 cells. The motif binds Tsg101 (vacuolar protein-sorting protein 23, or Vps23), which functions in endocytic trafficking. Here, we show that accumulation of the wild-type (wt) Gag precursor in a fraction of COS-1 cytoplasm enriched in multivesicular bodies and small particulate components of the plasma membrane (P100) is p6 dependent. Cleavage intermediates and mature CA mainly partitioned with more rapidly sedimenting larger material enriched in components of lysosomes and early endosomes (P27), and this also was p6 dependent. Expression of truncated or full-length Tsg101 proteins interfered with VLP assembly and Gag accumulation in the P100 fraction. This correlated with reduced accumulation of Gag tagged with green fluorescent protein (Gag-GFP) at the plasma membrane and colocalization with the tagged Tsg101 in perinuclear early endosomes, as visualized by confocal microscopy. Fractionation analysis and confocal examination both indicated that the N-terminal region of Tsg101, which contains binding sites for PTAP and ubiquitin (Ub), was required for Gag trafficking to the plasma membrane. Expression of FLAG-tagged Tsg101 with a deletion in the Ub-binding pocket inhibited VLP release almost completely and to a significantly greater extent than expression of the wt tagged Tsg101 protein or Tsg101-FLAG containing a deletion in the PTAP-binding region. The results demonstrate that Gag associates with endosomal trafficking compartments and indicate that efficient release of virus particles from the plasma membrane requires both the PTAP- and Ub-binding functions of Tsg101 to recruit the cellular machinery required for budding.
Traffic | 2011
Fiona Fernandes; Kang Chen; Lorna S. Ehrlich; Jing Jin; Min H. Chen; Gisselle N. Medina; Marc Symons; Ronald C. Montelaro; Julie G. Donaldson; Nico Tjandra; Carol A. Carter
Phosphatidylinositol 4,5‐biphosphate [PI(4,5)P2], the predominant phosphoinositide (PI) on the plasma membrane, binds the matrix (MA) protein of human immunodeficiency virus type 1 (HIV‐1) and equine infectious anemia virus (EIAV) with similar affinities in vitro. Interaction with PI(4,5)P2 is critical for HIV‐1 assembly on the plasma membrane. EIAV has been shown to localize in internal compartments; hence, the significance of its interaction with PI(4,5)P2 is unclear. We therefore investigated the binding in vitro of other PIs to EIAV MA and whether intracellular association with compartments bearing these PIs was important for assembly and release of virus‐like particles (VLPs) formed by Gag. In vitro, EIAV MA bound phosphatidylinositol 3‐phosphate [PI(3)P] with higher affinity than PI(4,5)P2 as revealed by nuclear magnetic resonance (NMR) spectra upon lipid titration. Gag was detected on the plasma membrane and in compartments enriched in phosphatidylinositol 3,5‐biphosphate [PI(3,5)P2]. Treatment of cells with YM201636, a kinase inhibitor that blocks production of PI(3,5)P2 from PI(3)P, caused Gag to colocalize with aberrant compartments and inhibited VLP release. In contrast to HIV‐1, release of EIAV VLPs was not significantly diminished by coexpression with 5‐phosphatase IV, an enzyme that specifically depletes PI(4,5)P2 from the plasma membrane. However, coexpression with synaptojanin 2, a phosphatase with broader specificity, diminished VLP production. PI‐binding pocket mutations caused striking budding defects, as revealed by electron microscopy. One of the mutations also modified Gag–Gag interaction, as suggested by altered bimolecular fluorescence complementation. We conclude that PI‐mediated targeting to peripheral and internal membranes is a critical factor in EIAV assembly and release.
Virology | 2008
Gisselle N. Medina; Andrew Pincetic; Lorna S. Ehrlich; Yongjun Zhang; Yi Tang; Jonathan Leis; Carol A. Carter
The Late (L) domain of the avian sarcoma virus (ASV) Gag protein binds Nedd4 ubiquitin ligase E3 family members and is the determinant of efficient virus release in avian and mammalian cells. We previously demonstrated that Nedd4 and Tsg101 constitutively interact raising the possibility that Nedd4 links ASV Gag to the ESCRT machinery. We now demonstrate that covalently linking Tsg101 to ASV Gag lacking the Nedd4 binding site (Deltap2b-Tsg101) ablates the requirement for Nedd4, but the rescue of budding occurs by use of a different budding mechanism than that used by wild type ASV Gag. The evidence that Tsg101 and Nedd4 direct release by different pathways is: (i) Release of the virus-like particles (VLPs) assembled from Gag in DF-1, an avian cell line, was resistant to dominant-negative interference by a Tsg101 mutant previously shown to inhibit release of both HIV and Mo-MLV. (ii) Release of VLPs from DF-1 cells was resistant to siRNA-mediated depletion of the endogenous pool of Tsg101 in these cells. (iii) VLPs assembled from wild-type ASV Gag exhibited highly efficient release from endosome-like membrane domains enriched in the tetraspanin protein CD63 or a fluorescent analogue of the phospholipid phosphatidylethanolamine. However, the VLPs assembled from the L domain mutant Deltap2b or a chimeric Deltap2b-Tsg101 Gag lacked these domain markers even though the chimeric Gag was released efficiently compared to the Deltap2b mutant. These results suggest that Tsg101 and Nedd4 facilitate Gag release through functionally exchangeable but independent routes and that Tsg101 can replace Nedd4 function in facilitating budding but not directing through the same membranes.
Journal of Virology | 2010
Lorna S. Ehrlich; Gisselle N. Medina; Mahfuz Khan; Michael Powell; Katsuhiko Mikoshiba; Carol A. Carter
ABSTRACT The structural precursor polyprotein, Gag, encoded by all retroviruses, including the human immunodeficiency virus type 1 (HIV-1), is necessary and sufficient for the assembly and release of particles that morphologically resemble immature virus particles. Previous studies have shown that the addition of Ca2+ to cells expressing Gag enhances virus particle production. However, no specific cellular factor has been implicated as mediator of Ca2+ provision. The inositol (1,4,5)-triphosphate receptor (IP3R) gates intracellular Ca2+ stores. Following activation by binding of its ligand, IP3, it releases Ca2+ from the stores. We demonstrate here that IP3R function is required for efficient release of HIV-1 virus particles. Depletion of IP3R by small interfering RNA, sequestration of its activating ligand by expression of a mutated fragment of IP3R that binds IP3 with very high affinity, or blocking formation of the ligand by inhibiting phospholipase C-mediated hydrolysis of the precursor, phosphatidylinositol-4,5-biphosphate, inhibited Gag particle release. These disruptions, as well as interference with ligand-receptor interaction using antibody targeted to the ligand-binding site on IP3R, blocked plasma membrane accumulation of Gag. These findings identify IP3R as a new determinant in HIV-1 trafficking during Gag assembly and introduce IP3R-regulated Ca2+ signaling as a potential novel cofactor in viral particle release.
Journal of Virology | 2001
Lars E. P. Dietrich; Lorna S. Ehrlich; Tracy J. LaGrassa; Dana Ebbets-Reed; Carol A. Carter
ABSTRACT While several cellular proteins are incorporated in the human immunodeficiency virus type 1 virion, cyclophilin (CyP) A is the only one whose absence has been demonstrated to impair infectivity. Incorporation of the cytosolic protein results from interaction with a highly exposed Pro-rich loop in the N-terminal region of the capsid (CA) domain of the precursor polyprotein, Pr55Gag. Even when prevented from interacting with CyP A, Pr55Gag still forms particles that proceed to mature into morphologically wild-type virions, suggesting that CyP A influences a postassembly event. The nature of this CyP A influence has yet to be elucidated. Here, we show that while CyP A binds both Gag and mature CA proteins, the two binding interactions are actually different. Tryptophan 121 (W121) in CyP A distinguished the two proteins: a phenylalanine substitution (W121F) impaired binding of mature CA protein but not of Gag. This indicates the occurrence of a maturation-dependent switch in the conformation of the Pro-rich loop. A structural consequence of Gag binding to CyP A was to block this maturational refolding, resulting in a 24-kDa CA protein retaining the immature Pro-rich loop conformation. Using trypsin as a structure probe, we demonstrate that the conformation of the C-terminal region in mature CA is also a product of maturational refolding. Binding to wild-type CyP A altered this conformation, as indicated by a reduction in the accessibility of Cys residue(s) in the region to chemical modification. Hence, the end result of binding to CyP A, whether the Pro-rich loop is in the context of Gag or mature CA protein, is a structurally modified mature CA protein. The postassembly role of CyP A may be mediated through these modified mature CA proteins.
Journal of Virology | 2011
Gisselle N. Medina; Lorna S. Ehrlich; M. H. Chen; Mahfuz Khan; Michael Powell; Carol A. Carter
ABSTRACT The four ESCRT (endocytic sorting complexes required for transport) complexes (ESCRT-0, -I, -II, and -III) normally operate sequentially in the trafficking of cellular cargo. HIV-1 Gag trafficking and release as virus-like particles (VLPs) require the participation of ESCRTs; however, its use of ESCRTs is selective and nonsequential. Specifically, Gag trafficking to release sites on the plasma membrane does not require ESCRT-0 or -II. It is known that a bypass of ESCRT-0 is achieved by the direct linkage of the ESCRT-I component, Tsg101, to the primary L domain motif (PTAP) in Gag and that bypass of ESCRT-II is achieved by the linkage of Gag to ESCRT-III through the adaptor protein Alix. However, the mechanism by which Gag suppresses the interaction of bound ESCRT-I with ESCRT-II is unknown. Here we show (i) that VLP release requires the steady-state level of Sprouty 2 (Spry2) in COS-1 cells, (ii) that Spry2 binds the ESCRT-II component Eap20, (iii) that binding Eap20 permits Spry2 to disrupt ESCRT-I interaction with ESCRT-II, and (iv) that coexpression of Gag with a Spry2 fragment that binds Eap20 increases VLP release. Spry2 also facilitated release of P7L-Gag (i.e., release in the absence of Tsg101 binding). In this case, rescue required the secondary L domain (YPXnL) in HIV-1 Gag that binds Alix and the region in Spry2 that binds Eap20. The results identify Spry2 as a novel cellular factor that facilitates release driven by the primary and secondary HIV-1 Gag L domains.
Molecular Biology International | 2012
Lorna S. Ehrlich; Carol A. Carter
More than a decade has elapsed since the link between the endosomal sorting complex required for transport (ESCRT) machinery and HIV-1 protein trafficking and budding was first identified. L domains in HIV-1 Gag mediate recruitment of ESCRT which function in bud abscission releasing the viral particle from the host cell. Beyond virus budding, the ESCRT machinery is also involved in the endocytic pathway, cytokinesis, and autophagy. In the past few years, the number of non-ESCRT host proteins shown to be required in the assembly process has also grown. In this paper, we highlight the role of recently identified cellular factors that link ESCRT machinery to calcium signaling machinery and we suggest that this liaison contributes to setting the stage for productive ESCRT recruitment and mediation of abscission. Parallel paradigms for non-ESCRT roles in virus budding and cytokinesis will be discussed.