Lorraine V. Kalia
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorraine V. Kalia.
Nature Reviews Neuroscience | 2004
Michael W. Salter; Lorraine V. Kalia
In the central nervous system, synaptic strength is regulated partly by changes in the function and number of postsynaptic glutamate receptors. The NMDA (N-methyl-D-aspartate) subtype of glutamate receptor (NMDAR) is regulated in part by the opposing actions of protein tyrosine kinases and phosphotyrosine phosphatases. Members of the Src family of protein tyrosine kinases upregulate NMDAR function, thereby gating the production of NMDAR-dependent synaptic potentiation. Src family kinases (SFKs) are a crucial point of convergence for signalling pathways that enhance NMDAR activity, so that SFKs act as a molecular hub for the control of NMDARs. These kinases regulate synaptic strength and are therefore vital for processes that underlie physiological and pathological plasticity in the brain and spinal cord.
Nature | 2003
Yi Nong; Yue-Qiao Huang; William Ju; Lorraine V. Kalia; Gholamreza Ahmadian; Yu Tian Wang; Michael W. Salter
NMDA (N-methyl-d-aspartate) receptors (NMDARs) are a principal subtype of excitatory ligand-gated ion channel with prominent roles in physiological and disease processes in the central nervous system. Recognition that glycine potentiates NMDAR-mediated currents as well as being a requisite co-agonist of the NMDAR subtype of ‘glutamate’ receptor profoundly changed our understanding of chemical synaptic communication in the central nervous system. The binding of both glycine and glutamate is necessary to cause opening of the NMDAR conductance pore. Although binding of either agonist alone is insufficient to cause current flow through the channel, we report here that stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. Glycine binding alone does not cause the receptor to be endocytosed; this requires both glycine and glutamate site activation of NMDARs. The priming effect of glycine is mimicked by the NMDAR glycine site agonist d-serine, and is blocked by competitive glycine site antagonists. Synaptic as well as extrasynaptic NMDARs are primed for internalization by glycine site stimulation. Our results demonstrate transmembrane signal transduction through activating the glycine site of NMDARs, and elucidate a model for modulating cell–cell communication in the central nervous system.
Lancet Neurology | 2008
Lorraine V. Kalia; Suneil K. Kalia; Michael W. Salter
Since the N-methyl-D-aspartate receptor (NMDAR) subunits were cloned less than two decades ago, a substantial amount of research has been invested into understanding their physiological function in the healthy CNS. Research has also been directed at their pathological roles in various neurological diseases, including disorders resulting from acute excitotoxic insults (eg, ischaemic stroke, traumatic brain injury), diseases due to chronic neurodegeneration (eg, Alzheimers, Parkinsons, and Huntingtons diseases and amyotrophic lateral sclerosis), disorders arising from sensitisation of neurons (eg, epilepsy, neuropathic pain), and neurodevelopmental disorders associated with NMDAR hypofunction (eg, schizophrenia). Selective NMDAR antagonists have not produced positive results in clinical trials. However, there are other NMDAR-targeted therapies used in current practice that are effective for treating some neurological disorders. In this Review, we describe the evidence for the use of these therapies and provide an overview of drugs being investigated in clinical trials. We also discuss new NMDAR-targeted strategies in clinical neurology.
Neuron | 2002
Kenneth A. Pelkey; Rand Askalan; Surojit Paul; Lorraine V. Kalia; Tri-Hung Nguyen; Graham M. Pitcher; Michael W. Salter; Paul J. Lombroso
The functional roles of protein tyrosine phosphatases (PTPs) in the developed CNS have been enigmatic. Here we show that striatal enriched tyrosine phosphatase (STEP) is a component of the N-methyl-D-aspartate receptor (NMDAR) complex. Functionally, exogenous STEP depressed NMDAR single-channel activity in excised membrane patches. STEP also depressed NMDAR-mediated synaptic currents whereas inhibiting endogenous STEP enhanced these currents. In hippocampal slices, administering STEP into CA1 neurons did not affect basal glutamatergic transmission evoked by Schaffer collateral stimulation but prevented tetanus-induced long-term potentiation (LTP). Conversely, inhibiting STEP in CA1 neurons enhanced transmission and occluded LTP induction through an NMDAR-, Src-, and Ca(2+)-dependent mechanism. Thus, STEP acts as a tonic brake on synaptic transmission by opposing Src-dependent upregulation of NMDARs.
Annals of Neurology | 2013
Lorraine V. Kalia; Suneil K. Kalia; Pamela J. McLean; Andres M. Lozano; Anthony E. Lang
Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long‐held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent, suggesting that another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α‐synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α‐synuclein also forms oligomeric species, with certain conformations being toxic to cells. The mechanisms by which these α‐synuclein oligomers cause cell death are being actively investigated, as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α‐synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications. ANN NEUROL 2013;73:155–169
Oncogene | 2004
Lorraine V. Kalia; Jeffrey R. Gingrich; Michael W. Salter
In the central nervous system (CNS), Src and other Src family kinases are widely expressed and are abundant in neurons. Src has been implicated in proliferation and differentiation during the development of the CNS. But Src is highly expressed in fully differentiated neurons in the developed CNS, implying additional functions of this kinase. Over the past decade, a large body of evidence has accumulated showing that a main function of Src is to upregulate the activity of N-methyl-D-aspartate (NMDA) receptors and other ion channels. NMDA receptors (NMDARs) are a principal subtype of glutamate receptors, which mediate fast excitatory transmission at most central synapses. In this review, we focus on Src as a regulator of NMDARs and on the role of Src in NMDAR-dependent synaptic plasticity. We also describe recent studies that give insights into the regulation of Src itself at glutamatergic synapses. By upregulating the function of NMDARs, Src gates the production of NMDAR-dependent synaptic potentiation and plasticity. Thus, Src may be critical for processes underlying physiological plasticity, including learning and memory, and pathological plasticity, such as pain and epilepsy.
PLOS Biology | 2009
David Ng; Graham M. Pitcher; Rachel K. Szilard; Andréa Sertié; Marijana Kanisek; Steven J. Clapcote; Tatiana V. Lipina; Lorraine V. Kalia; Daisy Joo; Colin McKerlie; Miguel A. Cortez; John C. Roder; Michael W. Salter; Roderick R. McInnes
The N-methyl-D-aspartate receptor (NMDAR), a major excitatory ligand-gated ion channel in the central nervous system (CNS), is a principal mediator of synaptic plasticity. Here we report that neuropilin tolloid-like 1 (Neto1), a complement C1r/C1s, Uegf, Bmp1 (CUB) domain-containing transmembrane protein, is a novel component of the NMDAR complex critical for maintaining the abundance of NR2A-containing NMDARs in the postsynaptic density. Neto1-null mice have depressed long-term potentiation (LTP) at Schaffer collateral-CA1 synapses, with the subunit dependency of LTP induction switching from the normal predominance of NR2A- to NR2B-NMDARs. NMDAR-dependent spatial learning and memory is depressed in Neto1-null mice, indicating that Neto1 regulates NMDA receptor-dependent synaptic plasticity and cognition. Remarkably, we also found that the deficits in LTP, learning, and memory in Neto1-null mice were rescued by the ampakine CX546 at doses without effect in wild-type. Together, our results establish the principle that auxiliary proteins are required for the normal abundance of NMDAR subunits at synapses, and demonstrate that an inherited learning defect can be rescued pharmacologically, a finding with therapeutic implications for humans.
Nature Medicine | 2011
Graham M. Pitcher; Lorraine V. Kalia; David Ng; Nathalie M. Goodfellow; Kathleen T. Yee; Evelyn K. Lambe; Michael W. Salter
Hypofunction of the N-methyl D-aspartate subtype of glutamate receptor (NMDAR) is hypothesized to be a mechanism underlying cognitive dysfunction in individuals with schizophrenia. For the schizophrenia-linked genes NRG1 and ERBB4, NMDAR hypofunction is thus considered a key detrimental consequence of the excessive NRG1-ErbB4 signaling found in people with schizophrenia. However, we show here that neuregulin 1β–ErbB4 (NRG1β-ErbB4) signaling does not cause general hypofunction of NMDARs. Rather, we find that, in the hippocampus and prefrontal cortex, NRG1β-ErbB4 signaling suppresses the enhancement of synaptic NMDAR currents by the nonreceptor tyrosine kinase Src. NRG1β-ErbB4 signaling prevented induction of long-term potentiation at hippocampal Schaffer collateral–CA1 synapses and suppressed Src-dependent enhancement of NMDAR responses during theta-burst stimulation. Moreover, NRG1β-ErbB4 signaling prevented theta burst–induced phosphorylation of GluN2B by inhibiting Src kinase activity. We propose that NRG1-ErbB4 signaling participates in cognitive dysfunction in schizophrenia by aberrantly suppressing Src-mediated enhancement of synaptic NMDAR function.
JAMA Neurology | 2015
Lorraine V. Kalia; Anthony E. Lang; Lili Naz Hazrati; Shinsuke Fujioka; Zbigniew K. Wszolek; Dennis W. Dickson; Owen A. Ross; Vivianna M. Van Deerlin; John Q. Trojanowski; Howard I. Hurtig; Roy N. Alcalay; Karen Marder; Lorraine N. Clark; Carles Gaig; Eduardo Tolosa; Javier Ruiz-Martínez; Jose Felix Marti-Masso; Isidre Ferrer; Adolfo López de Munain; Samuel M. Goldman; Birgitt Schüle; J. William Langston; Jan O. Aasly; Maria Teresa Giordana; Vincenzo Bonifati; Andreas Puschmann; Margherita Canesi; Gianni Pezzoli; André Maues de Paula; Kazuko Hasegawa
IMPORTANCE Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of genetic Parkinson disease (PD) known to date. The clinical features of manifesting LRRK2 mutation carriers are generally indistinguishable from those of patients with sporadic PD. However, some PD cases associated with LRRK2 mutations lack Lewy bodies (LBs), a neuropathological hallmark of PD. We investigated whether the presence or absence of LBs correlates with different clinical features in LRRK2-related PD. OBSERVATIONS We describe genetic, clinical, and neuropathological findings of 37 cases of LRRK2-related PD including 33 published and 4 unpublished cases through October 2013. Among the different mutations, the LRRK2 p.G2019S mutation was most frequently associated with LB pathology. Nonmotor features of cognitive impairment/dementia, anxiety, and orthostatic hypotension were correlated with the presence of LBs. In contrast, a primarily motor phenotype was associated with a lack of LBs. CONCLUSIONS AND RELEVANCE To our knowledge, this is the first report of clinicopathological correlations in a series of LRRK2-related PD cases. Findings from this selected group of patients with PD demonstrated that parkinsonian motor features can occur in the absence of LBs. However, LB pathology in LRRK2-related PD may be a marker for a broader parkinsonian symptom complex including cognitive impairment.
Neuropharmacology | 2003
Lorraine V. Kalia; Michael W. Salter
Five members of the Src family of non-receptor protein tyrosine kinases--Lck, Lyn, Fyn, Src, and Yes--are known to be expressed in the central nervous system. Src and Fyn have been shown to play important roles in synaptic transmission and plasticity at excitatory synapses. Here we investigate the subcellular distribution and potential binding partners of Src family protein tyrosine kinases in brain, focusing on the lesser studied kinases Lck, Lyn, and Yes. We find that Lck, Lyn, and Yes are localized to the postsynaptic density (PSD), the primary structural component of excitatory synapses. Lyn and Yes, as well as Src, but not Lck physically associate with the prominent PSD scaffolding protein PSD-95 in co-immunoprecipitation experiments. Further, we demonstrate that PSD-95 GST fusion proteins bind directly to purified recombinant Lyn, Src, and Yes in vitro. In addition, we show that PSD-95 is unique among PSD-95 family members in that the other members, PSD-93, SAP97, and SAP102, do not physically associate with Lyn, Src, or Yes. Together our results suggest that PSD-95 may be important for localizing and/or regulating multiple Src protein tyrosine kinases at the NMDA receptor multiprotein complex.