Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loukas Petridis is active.

Publication


Featured researches published by Loukas Petridis.


Green Chemistry | 2014

Common processes drive the thermochemical pretreatment of lignocellulosic biomass

Paul Langan; Loukas Petridis; Hugh O'Neill; Sai Venkatesh Pingali; Marcus Foston; Yoshiharu Nishiyama; Roland Schulz; Benjamin Lindner; B. Leif Hanson; Shane E. Harton; William T. Heller; Volker S. Urban; Barbara R. Evans; S. Gnanakaran; Arthur J. Ragauskas; Jeremy C. Smith; Brian H. Davison

Lignocellulosic biomass, a potentially important renewable organic source of energy and chemical feedstock, resists degradation to glucose in industrial hydrolysis processes and thus requires expensive thermochemical pretreatments. Understanding the mechanism of biomass breakdown during these pretreatments will lead to more efficient use of biomass. By combining multiple probes of structure, sensitive to different length scales, with molecular dynamics simulations, we reveal two fundamental processes responsible for the morphological changes in biomass during steam explosion pretreatment: cellulose dehydration and lignin-hemicellulose phase separation. We further show that the basic driving forces are the same in other leading thermochemical pretreatments, such as dilute acid pretreatment and ammonia fiber expansion.


Journal of Chemical Theory and Computation | 2009

Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer

Roland Schulz; Benjamin Lindner; Loukas Petridis; Jeremy C. Smith

A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million-atom biological systems scale well up to ∼30k cores, producing ∼30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.


Journal of the American Chemical Society | 2011

Simulation Analysis of the Temperature Dependence of Lignin Structure and Dynamics

Loukas Petridis; Roland Schulz; Jeremy C. Smith

Lignins are hydrophobic, branched polymers that regulate water conduction and provide protection against chemical and biological degradation in plant cell walls. Lignins also form a residual barrier to effective hydrolysis of plant biomass pretreated at elevated temperatures in cellulosic ethanol production. Here, the temperature-dependent structure and dynamics of individual softwood lignin polymers in aqueous solution are examined using extensive (17 μs) molecular dynamics simulations. With decreasing temperature the lignins are found to transition from mobile, extended to glassy, compact states. The polymers are composed of blobs, inside which the radius of gyration of a polymer segment is a power-law function of the number of monomers comprising it. In the low temperature states the blobs are interpermeable, the polymer does not conform to Zimm/Stockmayer theory, and branching does not lead to reduction of the polymer size, the radius of gyration being instead determined by shape anisotropy. At high temperatures the blobs become spatially separated leading to a fractal crumpled globule form. The low-temperature collapse is thermodynamically driven by the increase of the translational entropy and density fluctuations of water molecules removed from the hydration shell, thus distinguishing lignin collapse from enthalpically driven coil-globule polymer transitions and providing a thermodynamic role of hydration water density fluctuations in driving hydrophobic polymer collapse. Although hydrophobic, lignin is wetted, leading to locally enhanced chain dynamics of solvent-exposed monomers. The detailed characterization obtained here provides insight at atomic detail into processes relevant to biomass pretreatment for cellulosic ethanol production and general polymer coil-globule transition phenomena.


Biotechnology for Biofuels | 2015

Mechanism of lignin inhibition of enzymatic biomass deconstruction

Josh V. Vermaas; Loukas Petridis; Xianghong Qi; Roland Schulz; Benjamin Lindner; Jeremy C. Smith

BackgroundThe conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process.ResultsBy performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493).Conclusions Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.


Journal of Computational Chemistry | 2009

A molecular mechanics force field for lignin

Loukas Petridis; Jeremy C. Smith

A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation‐derived structural features with experimental results. Together with the existing force field for polysaccharides, this lignin force field will enable full simulations of lignocellulose.


Plant Physiology | 2016

A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers

Venu Gopal Vandavasi; Daniel K. Putnam; Qiu Zhang; Loukas Petridis; William T. Heller; B. Tracy Nixon; Candace H. Haigler; Udaya C. Kalluri; Leighton Coates; Paul Langan; Jeremy C. Smith; Jens Meiler; Hugh O'Neill

Assembly into stable trimers provides strong evidence for 18 protein subunits to assemble in a cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril. A cellulose synthesis complex with a “rosette” shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the “hexamer of trimers” model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.


Journal of Biological Chemistry | 2011

Small-angle neutron scattering reveals pH-dependent conformational changes in trichoderma reesei cellobiohydrolase I: Implications for enzymatic activity

Sai Venkatesh Pingali; Hugh O'Neill; Joseph McGaughey; Volker S. Urban; Caroline S Rempe; Loukas Petridis; Jeremy C. Smith; Barbara R. Evans; William T. Heller

Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4–5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection.


Cellulose | 2014

Morphological changes in the cellulose and lignin components of biomass occur at different stages during steam pretreatment

Sai Venkatesh Pingali; Hugh O’Neill; Yoshiharu Nishiyama; Lilin He; Yuri B. Melnichenko; Volker S. Urban; Loukas Petridis; Brian H. Davison; Paul Langan

Morphological changes to the different components of lignocellulosic biomass were observed as they occurred during steam pretreatment by placing a pressure reaction cell in a neutron beam and collecting time-resolved neutron scattering data. Changes to cellulose morphology occurred mainly in the heating phase, whereas changes in lignin morphology occurred mainly in the holding and cooling phases. During the heating stage, water is irreversibly expelled from cellulose microfibrils as the elementary fibrils coalesce. During the holding phase lignin aggregates begin to appear and they increase in size most noticeably during the cooling phase. This experiment demonstrates the unique information that in situ small angle neutron scattering studies of pretreatment can provide. This approach could be useful in optimizing the heating, holding and cooling stages of pretreatments to allow the exact size and nature of lignin aggregates to be controlled in order to enhance enzyme accessibility to cellulose and therefore the efficiency of biomass conversion.


Biophysical Journal | 2014

The Role of Histone Tails in the Nucleosome: A Computational Study

Jochen Erler; Ruihan Zhang; Loukas Petridis; Xiaolin Cheng; Jeremy C. Smith; Jörg Langowski

Histone tails play an important role in gene transcription and expression. We present here a systematic computational study of the role of histone tails in the nucleosome, using replica exchange molecular dynamics simulations with an implicit solvent model and different well-established force fields. We performed simulations for all four histone tails, H4, H3, H2A, and H2B, isolated and with inclusion of the nucleosome. The results confirm predictions of previous theoretical studies for the secondary structure of the isolated tails but show a strong dependence on the force field used. In the presence of the entire nucleosome for all force fields, the secondary structure of the histone tails is destabilized. Specific contacts are found between charged lysine and arginine residues and DNA phosphate groups and other binding sites in the minor and major DNA grooves. Using cluster analysis, we found a single dominant configuration of binding to DNA for the H4 and H2A histone tails, whereas H3 and H2B show multiple binding configurations with an equal probability. The leading stabilizing contribution for those binding configurations is the attractive interaction between the positively charged lysine and arginine residues and the negatively charged phosphate groups, and thus the resulting charge neutralization. Finally, we present results of molecular dynamics simulations in explicit solvent to confirm our conclusions. Results from both implicit and explicit solvent models show that large portions of the histone tails are not bound to DNA, supporting the complex role of these tails in gene transcription and expression and making them possible candidates for binding sites of transcription factors, enzymes, and other proteins.


Biomacromolecules | 2013

Solvent-Driven Preferential Association of Lignin with Regions of Crystalline Cellulose in Molecular Dynamics Simulation

Benjamin Lindner; Loukas Petridis; Roland Schulz; Jeremy C. Smith

The precipitation of lignin onto cellulose after pretreatment of lignocellulosic biomass is an obstacle to economically viable cellulosic ethanol production. Here, 750 ns nonequilibrium molecular dynamics simulations are reported of a system of lignin and cellulose in aqueous solution. Lignin is found to strongly associate with itself and the cellulose. However, noncrystalline regions of cellulose are observed to have a lower tendency to associate with lignin than crystalline regions, and this is found to arise from stronger hydration of the noncrystalline chains. The results suggest that the recalcitrance of crystalline cellulose to hydrolysis arises not only from the inaccessibility of inner fibers but also due to the promotion of lignin adhesion.

Collaboration


Dive into the Loukas Petridis's collaboration.

Top Co-Authors

Avatar

Jeremy C. Smith

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul Langan

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Micholas Dean Smith

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiaolin Cheng

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sai Venkatesh Pingali

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

William T. Heller

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hugh O'Neill

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Roland Schulz

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Volker S. Urban

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Arthur J. Ragauskas

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge