Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucas DeMaio is active.

Publication


Featured researches published by Lucas DeMaio.


Journal of Neurochemistry | 2002

Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin

David A. Antonetti; Ellen B. Wolpert; Lucas DeMaio; Nicole S. Harhaj; Russell C. Scaduto

Corticosteroids provide an effective treatment to reduce edema for conditions in which the blood–brain or blood–retinal barrier is compromised. However, little is known about the mechanism by which these hormones affect endothelial cell function. We hypothesized that hydrocortisone would reduce transport of water and solutes across bovine retinal endothelial cell (BREC) monolayers coincident with changes to the tight junction protein occludin. Treatment of BREC with 103 nm hydrocortisone for two days significantly decreased water and solute transport across cell monolayers. Immunoblot analysis of occludin extracted in SDS or urea based buffers revealed a 1.65‐ or 2.57‐fold increase in content, respectively. A similar two‐fold increase in occludin mRNA was observed by real‐time PCR. Immunocytochemistry revealed hydrocortisone dramatically increased both occludin and ZO‐1 staining at the cell border. Additionally, 4 h of hydrocortisone treatment significantly reduced occludin phosphorylation. To our knowledge, this is the first example of a regulated decrease in occludin phosphorylation associated with increased barrier properties. In conclusion, hydrocortisone directly affects retinal endothelial cell barrier properties coincident with changes in occludin content, phosphorylation and tight junction assembly. Localized hydrocortisone therapy may be developed as a treatment option for patients suffering from retinal edema due to diabetes.


American Journal of Respiratory Cell and Molecular Biology | 2011

Role of Endoplasmic Reticulum Stress in Epithelial–Mesenchymal Transition of Alveolar Epithelial Cells: Effects of Misfolded Surfactant Protein

Qian Zhong; Beiyun Zhou; David K. Ann; Parviz Minoo; Yixin Liu; Agnes Banfalvi; Manda S. Krishnaveni; Mickael Dubourd; Lucas DeMaio; Brigham C. Willis; Kwang-Jin Kim; Roland M. duBois; Edward D. Crandall; Michael F. Beers; Zea Borok

Endoplasmic reticulum (ER) stress has been implicated in alveolar epithelial type II (AT2) cell apoptosis in idiopathic pulmonary fibrosis. We hypothesized that ER stress (either chemically induced or due to accumulation of misfolded proteins) is also associated with epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs). ER stress inducers, thapsigargin (TG) or tunicamycin (TN), increased expression of ER chaperone, Grp78, and spliced X-box binding protein 1, decreased epithelial markers, E-cadherin and zonula occludens-1 (ZO-1), increased the myofibroblast marker, α-smooth muscle actin (α-SMA), and induced fibroblast-like morphology in both primary AECs and the AT2 cell line, RLE-6TN, consistent with EMT. Overexpression of the surfactant protein (SP)-C BRICHOS mutant SP-C(ΔExon4) in A549 cells increased Grp78 and α-SMA and disrupted ZO-1 distribution, and, in primary AECs, SP-C(ΔExon4) induced fibroblastic-like morphology, decreased ZO-1 and E-cadherin and increased α-SMA, mechanistically linking ER stress associated with mutant SP to fibrosis through EMT. Whereas EMT was evident at lower concentrations of TG or TN, higher concentrations caused apoptosis. The Src inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4]pyramidine) (PP2), abrogated EMT associated with TN or TG in primary AECs, whereas overexpression of SP-C(ΔExon4) increased Src phosphorylation, suggesting a common mechanism. Furthermore, increased Grp78 immunoreactivity was observed in AT2 cells of mice after bleomycin injury, supporting a role for ER stress in epithelial abnormalities in fibrosis in vivo. These results demonstrate that ER stress induces EMT in AECs, at least in part through Src-dependent pathways, suggesting a novel role for ER stress in fibroblast accumulation in pulmonary fibrosis.


American Journal of Respiratory Cell and Molecular Biology | 2010

Mechanisms of Alveolar Epithelial Translocation of a Defined Population of Nanoparticles

Nazanin R. Yacobi; Noah Malmstadt; Farnoosh Fazlollahi; Lucas DeMaio; Ronald R. Marchelletta; Sarah F. Hamm-Alvarez; Zea Borok; Kwang-Jin Kim; Edward D. Crandall

To explore mechanisms of nanoparticle interactions with and trafficking across lung alveolar epithelium, we utilized primary rat alveolar epithelial cell monolayers (RAECMs) and an artificial lipid bilayer on filter model (ALBF). Trafficking rates of fluorescently labeled polystyrene nanoparticles (PNPs; 20 and 100 nm, carboxylate (negatively charged) or amidine (positively charged)-modified) in the apical-to-basolateral direction under various experimental conditions were measured. Using confocal laser scanning microscopy, we investigated PNP colocalization with early endosome antigen-1, caveolin-1, clathrin heavy chain, cholera toxin B, and wheat germ agglutinin. Leakage of 5-carboxyfluorescein diacetate from RAECMs, and trafficking of (22)Na and (14)C-mannitol across ALBF, were measured in the presence and absence of PNPs. Results showed that trafficking of positively charged PNPs was 20-40 times that of negatively charged PNPs across both RAECMs and ALBF, whereas translocation of PNPs across RAECMs was 2-3 times faster than that across ALBF. Trafficking rates of PNPs across RAECMs did not change in the presence of EGTA (which decreased transepithelial electrical resistance to zero) or inhibitors of endocytosis. Confocal laser scanning microscopy revealed no intracellular colocalization of PNPs with early endosome antigen-1, caveolin-1, clathrin heavy chain, cholera toxin B, or wheat germ agglutinin. Leakage of 5-carboxyfluorescein diacetate from alveolar epithelial cells, and sodium ion and mannitol flux across ALBF, were not different in the presence or absence of PNPs. These data indicate that PNPs translocate primarily transcellularly across RAECMs, but not via known major endocytic pathways, and suggest that such translocation may take place by diffusion of PNPs through the lipid bilayer of cell plasma membranes.


Nanomedicine: Nanotechnology, Biology and Medicine | 2008

Polystyrene nanoparticle trafficking across alveolar epithelium

Nazanin R. Yacobi; Lucas DeMaio; Jiansong Xie; Sarah F. Hamm-Alvarez; Zea Borok; Kwang-Jin Kim; Edward D. Crandall

We investigated trafficking of polystyrene nanoparticles (PNP; 20 and 100 nm; carboxylate, sulfate, or aldehyde-sulfate modified [negatively charged] and amidine-modified [positively charged]) across rat alveolar epithelial cell monolayers (RAECM). Apical-to-basolateral fluxes of nanoparticles were estimated as functions of apical PNP concentration ([PNP]) and temperature. Uptake of nanoparticles into RAECM was determined using confocal microscopy. Fluxes increased as charge density became less negative/more positive, with positively charged PNPs trafficking 20-40 times faster than highly negatively charged PNP of comparable size. Trafficking rates decreased with increasing PNP diameter. PNP fluxes tended to level off at high apical [PNP]. Fluxes at 4 degrees C were significantly lower than those at 37 degrees C. Confocal microscopy revealed nanoparticles localized to cell cytoplasm, whereas cell junctions and nuclei appeared free of PNP. These data indicate that (1) trafficking of PNP across RAECM is strongly influenced by charge density, size, and temperature, (2) PNP translocate primarily transcellularly, and (3) PNP translocation requires cellular energy.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Characterization of mouse alveolar epithelial cell monolayers.

Lucas DeMaio; Wanru Tseng; Zerlinde Balverde; Juan R. Alvarez; Kwang-Jin Kim; Diane G. Kelley; Robert M. Senior; Edward D. Crandall; Zea Borok

We investigated the influence of extracellular matrix on transport properties of mouse alveolar epithelial cell (AEC) monolayers (MAECM) and transdifferentiation of isolated mouse alveolar epithelial type II (AT2) cells into an alveolar epithelial type I (AT1) cell-like phenotype. Primary mouse AT2 cells plated on laminin 5-coated polycarbonate filters formed monolayers with transepithelial resistance (R(T)) and equivalent short-circuit current (I(EQ)) of 1.8 kOmega.cm(2) and 5.3 microA/cm(2), respectively, after 8 days in culture. Amiloride (10 microM), ouabain (0.1 mM), and pimozide (10 microM) decreased MAECM I(EQ) to 40%, 10%, and 65% of its initial value, respectively. Sequential addition of pimozide and amiloride, in either order, revealed that their inhibitory effects are additive, suggesting that cyclic nucleotide-gated channels contribute to amiloride-insensitive active ion transport across MAECM. Ussing chamber measurements of unidirectional ion fluxes across MAECM under short-circuit conditions indicated that net absorption of Na(+) in the apical-to-basolateral direction is comparable to net ion flux calculated from the observed short-circuit current: 0.38 and 0.33 microeq.cm(-2).h(-1), respectively. Between days 1 and 9 in culture, AEC demonstrated increased expression of aquaporin-5 protein, an AT1 cell marker, and decreased expression of pro-surfactant protein-C protein, an AT2 cell marker, consistent with transition to an AT1 cell-like phenotype. These results demonstrate that AT1 cell-like MAECM grown on laminin 5-coated polycarbonate filters exhibit active and passive transport properties that likely reflect the properties of intact mouse alveolar epithelium. This mouse in vitro model will enhance the study of AEC derived from mutant strains of mice and help define important structure-function correlations.


The Journal of Pathology | 2012

Ligand-independent transforming growth factor-β type I receptor signalling mediates type I collagen-induced epithelial-mesenchymal transition.

Lucas DeMaio; Stephen T. Buckley; Manda S. Krishnaveni; Per Flodby; Mickael Dubourd; Agnes Banfalvi; Yiming Xing; Carsten Ehrhardt; Parviz Minoo; Beiyun Zhou; Edward D. Crandall; Zea Borok

Evidence suggests epithelial–mesenchymal transition (EMT) as one potential source of fibroblasts in idiopathic pulmonary fibrosis. To assess the contribution of alveolar epithelial cell (AEC) EMT to fibroblast accumulation in vivo following lung injury and the influence of extracellular matrix on AEC phenotype in vitro, Nkx2.1‐Cre;mT/mG mice were generated in which AECs permanently express green fluorescent protein (GFP). On days 17–21 following intratracheal bleomycin administration, ∼4% of GFP‐positive epithelial‐derived cells expressed vimentin or α‐smooth muscle actin (α‐SMA). Primary AECs from Nkx2.1‐Cre;mT/mG mice cultured on laminin‐5 or fibronectin maintained an epithelial phenotype. In contrast, on type I collagen, cells of epithelial origin displayed nuclear localization of Smad3, acquired spindle‐shaped morphology, expressed α‐SMA and phospho‐Smad3, consistent with activation of the transforming growth factor‐β (TGFβ) signalling pathway and EMT. α‐SMA induction and Smad3 nuclear localization were blocked by the TGFβ type I receptor (TβRI, otherwise known as Alk5) inhibitor SB431542, while AEC derived from Nkx2.1‐Cre;Alk5


American Journal of Respiratory Cell and Molecular Biology | 2014

Knockout Mice Reveal Key Roles for Claudin 18 in Alveolar Barrier Properties and Fluid Homeostasis

Guanglei Li; Per Flodby; Jiao Luo; Hidenori Kage; Arnold Sipos; Danping Gao; Yanbin Ji; LaMonta L. Beard; Crystal N. Marconett; Lucas DeMaio; Yong Ho Kim; Kwang-Jin Kim; Ite A. Laird-Offringa; Parviz Minoo; Janice M. Liebler; Beiyun Zhou; Edward D. Crandall; Zea Borok

^{\rm{flox/KO}}


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury

Hidenori Kage; Per Flodby; Danping Gao; Yong Ho Kim; Crystal N. Marconett; Lucas DeMaio; Kwang-Jin Kim; Edward D. Crandall; Zea Borok

mice did not undergo EMT on collagen, consistent with a requirement for signalling via Alk5 in collagen‐induced EMT. Inability of a pan‐specific TGFβ neutralizing antibody to inhibit effects of collagen together with absence of active TGFβ in culture supernatants is consistent with TGFβ ligand‐independent activation of Smad signalling. These results support the notion that AECs can acquire a mesenchymal phenotype following injury in vivo and implicate type I collagen as a key regulator of EMT in AECs through signalling via Alk5, likely in a TGFβ ligand‐independent manner. Copyright


PLOS ONE | 2012

Troglitazone Attenuates TGF-β1-Induced EMT in Alveolar Epithelial Cells via a PPARγ-Independent Mechanism

Beiyun Zhou; Stephen T. Buckley; Vipul Patel; Yixin Liu; Jiao Luo; Manda S. Krishnaveni; Mihaela Ivan; Lucas DeMaio; Kwang-Jin Kim; Carsten Ehrhardt; Edward D. Crandall; Zea Borok

Claudin proteins are major constituents of epithelial and endothelial tight junctions (TJs) that regulate paracellular permeability to ions and solutes. Claudin 18, a member of the large claudin family, is highly expressed in lung alveolar epithelium. To elucidate the role of claudin 18 in alveolar epithelial barrier function, we generated claudin 18 knockout (C18 KO) mice. C18 KO mice exhibited increased solute permeability and alveolar fluid clearance (AFC) compared with wild-type control mice. Increased AFC in C18 KO mice was associated with increased β-adrenergic receptor signaling together with activation of cystic fibrosis transmembrane conductance regulator, higher epithelial sodium channel, and Na-K-ATPase (Na pump) activity and increased Na-K-ATPase β1 subunit expression. Consistent with in vivo findings, C18 KO alveolar epithelial cell (AEC) monolayers exhibited lower transepithelial electrical resistance and increased solute and ion permeability with unchanged ion selectivity. Claudin 3 and claudin 4 expression was markedly increased in C18 KO mice, whereas claudin 5 expression was unchanged and occludin significantly decreased. Microarray analysis revealed changes in cytoskeleton-associated gene expression in C18 KO mice, consistent with observed F-actin cytoskeletal rearrangement in AEC monolayers. These findings demonstrate a crucial nonredundant role for claudin 18 in the regulation of alveolar epithelial TJ composition and permeability properties. Increased AFC in C18 KO mice identifies a role for claudin 18 in alveolar fluid homeostasis beyond its direct contributions to barrier properties that may, at least in part, compensate for increased permeability.


international conference of the ieee engineering in medicine and biology society | 2004

MEMS shear stress sensors for cardiovascular diagnostics

Gopikrishnan Soundararajan; Tzung K. Hsiai; Lucas DeMaio; Michael Chang; Stanley Chang

Claudins are tight junction proteins that regulate paracellular ion permeability of epithelium and endothelium. Claudin 4 has been reported to function as a paracellular sodium barrier and is one of three major claudins expressed in lung alveolar epithelial cells (AEC). To directly assess the role of claudin 4 in regulation of alveolar epithelial barrier function and fluid homeostasis in vivo, we generated claudin 4 knockout (Cldn4 KO) mice. Unexpectedly, Cldn4 KO mice exhibited normal physiological phenotype although increased permeability to 5-carboxyfluorescein and decreased alveolar fluid clearance were noted. Cldn4 KO AEC monolayers exhibited unchanged ion permeability, higher solute permeability, and lower short-circuit current compared with monolayers from wild-type mice. Claudin 3 and 18 expression was similar between wild-type and Cldn4 KO alveolar epithelial type II cells. In response to either ventilator-induced lung injury or hyperoxia, claudin 4 expression was markedly upregulated in wild-type mice, whereas Cldn4 KO mice showed greater degrees of lung injury. RNA sequencing, in conjunction with differential expression and upstream analysis after ventilator-induced lung injury, suggested Egr1, Tnf, and Il1b as potential mediators of increased lung injury in Cldn4 KO mice. These results demonstrate that claudin 4 has little effect on normal lung physiology but may function to protect against acute lung injury.

Collaboration


Dive into the Lucas DeMaio's collaboration.

Top Co-Authors

Avatar

Edward D. Crandall

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Zea Borok

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kwang-Jin Kim

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Per Flodby

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Parviz Minoo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beiyun Zhou

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Manda S. Krishnaveni

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Sarah F. Hamm-Alvarez

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Tzung K. Hsiai

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge