Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucía Yim is active.

Publication


Featured researches published by Lucía Yim.


Current Gene Therapy | 2010

Salmonella as Live Trojan Horse for Vaccine Development and Cancer Gene Therapy

María Moreno; M. Gabriela Kramer; Lucía Yim; José A. Chabalgoity

The design of efficient vectors for vaccine development and cancer gene therapy is an area of intensive research. Bacteria-based vectors are being investigated as optimal vehicles for antigen and therapeutic gene delivery to immune and tumour cells. Attenuated Salmonella strains have shown great potential as live vectors with broad applications in human and veterinary medicine. An impressively high, and still growing, number of reports published over the last two decades have demonstrated the effectiveness in animal models of Salmonella-based therapies for the prevention and treatment of infectious and non-infectious diseases, as well as cancer. Further, the recent dramatic expansion in knowledge of genetics, biology and pathogenesis of the bacteria allows more rational design of Salmonella constructs tailored for specific applications. However, only few clinical trials have been conducted so far, and although they have conclusively demonstrated the safety of this system, the results on immunogenicity are less than optimal. Thus, more research particularly in target species is required to bring this system closer to human and veterinary use. In this review we first describe some particularities of the bacteria and its relationship with the host that could be on the basis of its success as vector, and then summarize the different strategies used so far to develop Salmonella-based vaccines for infectious diseases as well as for non-traditional indications such as prion and Alzheimer disease vaccination. Finally, we review the many different approaches that employ Salmonella for the design of new therapies for cancer.


BMC Microbiology | 2009

Genomic and phenotypic variation in epidemic-spanning Salmonella enterica serovar Enteritidis isolates

Laura Betancor; Lucía Yim; Maria Fookes; Arací Martínez; Nicholas R. Thomson; Alasdair Ivens; Sarah E. Peters; Clare E. Bryant; Gabriela Algorta; Samuel Kariuki; Felipe Schelotto; Duncan J. Maskell; Gordon Dougan; José A. Chabalgoity

BackgroundSalmonella enterica serovar Enteritidis (S. Enteritidis) has caused major epidemics of gastrointestinal infection in many different countries. In this study we investigate genome divergence and pathogenic potential in S. Enteritidis isolated before, during and after an epidemic in Uruguay.Results266 S. Enteritidis isolates were genotyped using RAPD-PCR and a selection were subjected to PFGE analysis. From these, 29 isolates spanning different periods, genetic profiles and sources of isolation were assayed for their ability to infect human epithelial cells and subjected to comparative genomic hybridization using a Salmonella pan-array and the sequenced strain S. Enteritidis PT4 P125109 as reference. Six other isolates from distant countries were included as external comparators.Two hundred and thirty three chromosomal genes as well as the virulence plasmid were found as variable among S. Enteritidis isolates. Ten out of the 16 chromosomal regions that varied between different isolates correspond to phage-like regions. The 2 oldest pre-epidemic isolates lack phage SE20 and harbour other phage encoded genes that are absent in the sequenced strain. Besides variation in prophage, we found variation in genes involved in metabolism and bacterial fitness. Five epidemic strains lack the complete Salmonella virulence plasmid. Significantly, strains with indistinguishable genetic patterns still showed major differences in their ability to infect epithelial cells, indicating that the approach used was insufficient to detect the genetic basis of this differential behaviour.ConclusionThe recent epidemic of S. Enteritidis infection in Uruguay has been driven by the introduction of closely related strains of phage type 4 lineage. Our results confirm previous reports demonstrating a high degree of genetic homogeneity among S. Enteritidis isolates. However, 10 of the regions of variability described here are for the first time reported as being variable in S. Enteritidis. In particular, the oldest pre-epidemic isolates carry phage-associated genetic regions not previously reported in S. Enteritidis. Overall, our results support the view that phages play a crucial role in the generation of genetic diversity in S. Enteritidis and that phage SE20 may be a key marker for the emergence of particular isolates capable of causing epidemics.


Vaccine | 2015

Mucosal immunization with an attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease

Fernando Goni; Candace K. Mathiason; Lucía Yim; Kinlung Wong; Jeanette Hayes-Klug; Amy V. Nalls; Daniel Peyser; Veronica Estevez; Nathaniel D. Denkers; Jinfeng Xu; David A. Osborn; Karl V. Miller; Robert J. Warren; David R. Brown; José A. Chabalgoity; Edward A. Hoover; Thomas Wisniewski

Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying pathogenesis is related to a conformational change of a normal, self-protein called PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie). Bovine spongiform encephalopathy (BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal response was established, the vaccinated animals were boosted orally and locally by application of polymerized recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this vaccinate react to PrP(CWD). We document the first partially successful vaccination for a prion disease in a species naturally at risk.


Applied and Environmental Microbiology | 2010

Differential Phenotypic Diversity among Epidemic-Spanning Salmonella enterica Serovar Enteritidis Isolates from Humans or Animals

Lucía Yim; Laura Betancor; Arací Martínez; Gerardo Giossa; Clare E. Bryant; Duncan J. Maskell; José A. Chabalgoity

ABSTRACT Nontyphoidal salmonellae are major causes of food-borne disease worldwide. In Uruguay, Salmonella enterica serovar Enteritidis was the most commonly isolated serovar throughout the last decade, with a marked epidemic period between 1995 and 2004. In a previous study, we conducted comparative genomics of 29 epidemic-spanning S. Enteritidis field isolates, and here we evaluated the pathogenic potential of the same set of isolates using several phenotypic assays. The sample included 15 isolates from human gastroenteritis, 5 from invasive disease, and 9 from nonhuman sources. Contrary to the genetic homogeneity previously observed, we found great phenotypic variability among these isolates. One-third of them were defective in at least one assay, namely, 10 isolates were defective in motility, 8 in invasion of Caco-2 cells, and 10 in survival in egg albumen. Twelve isolates were tested for invasiveness in 3-day-old chickens, and five of these were significantly less invasive than the reference strain. The two oldest preepidemic isolates were reduced in fitness in all assays, providing a plausible explanation for the previous negligible incidence of S. Enteritidis in Uruguay and supporting the view that the introduction or emergence of a more virulent strain was responsible for the marked rise of this serovar. Further, we found differences in fitness among the isolates which depended on the source of isolation. A total of 1 out of 14 isolates from human gastroenteritis, but 6 out of 13 isolates from other sources, was impaired in at least two assays, suggesting enhanced fitness among strains able to cause intestinal disease in humans.


The Open Microbiology Journal | 2012

Genomic Comparison of the Closely Related Salmonella enterica Serovars Enteritidis and Dublin

Laura Betancor; Lucía Yim; Arací Martínez; Maria Fookes; Sebastián Sasías; Felipe Schelotto; Nicholas R. Thomson; Duncan J. Maskell; José A. Chabalgoity

The Enteritidis and Dublin serovars of Salmonella enterica are closely related, yet they differ significantly in pathogenicity and epidemiology. S. Enteritidis is a broad host range serovar that commonly causes gastroenteritis and infrequently causes invasive disease in humans. S. Dublin mainly colonizes cattle but upon infecting humans often results in invasive disease.To gain a broader view of the extent of these differences we conducted microarray-based comparative genomics between several field isolates from each serovar. Genome degradation has been correlated with host adaptation in Salmonella, thus we also compared at whole genome scale the available genomic sequences of them to evaluate pseudogene composition within each serovar. Microarray analysis revealed 3771 CDS shared by both serovars while 33 were only present in Enteritidis and 87 were exclusive to Dublin. Pseudogene evaluation showed 177 inactive CDS in S. Dublin which correspond to active genes in S. Enteritidis, nine of which are also inactive in the host adapted S. Gallinarum and S. Choleraesuis serovars. Sequencing of these 9 CDS in several S. Dublin clinical isolates revealed that they are pseudogenes in all of them, indicating that this feature is not peculiar to the sequenced strain. Among these CDS, shdA (Peyer´s patch colonization factor) and mglA (galactoside transport ATP binding protein), appear also to be inactive in the human adapted S. Typhi and S. Paratyphi A, suggesting that functionality of these genes may be relevant for the capacity of certain Salmonella serovars to infect a broad range of hosts.


Applied and Environmental Microbiology | 2011

Naturally Occurring Motility-Defective Mutants of Salmonella enterica Serovar Enteritidis Isolated Preferentially from Nonhuman Rather than Human Sources

Lucía Yim; Laura Betancor; Arací Martínez; Clare E. Bryant; Duncan J. Maskell; José A. Chabalgoity

ABSTRACT Salmonellosis represents a worldwide health problem because it is one of the major causes of food-borne disease. Although motility is postulated as an important Salmonella virulence attribute, there is little information about variation in motility in natural isolates. Here we report the identification of a point mutation (T551 → G) in motA, a gene essential for flagellar rotation, in several Salmonella enterica serovar Enteritidis field isolates. This mutation results in bacteria that can biosynthesize structurally normal but paralyzed flagella and are impaired in their capacity to invade human intestinal epithelial cells. Introduction of a wild-type copy of motA into one of these isolates restored both motility and cell invasiveness. The motA mutant triggered higher proinflammatory transcriptional responses than an aflagellate isolate in differentiated Caco-2 cells, suggesting that the paralyzed flagella are able to signal through pattern recognition receptors. A specific PCR was designed to screen for the T551 → G mutation in a collection of 266 S. Enteritidis field isolates from a nationwide epidemic, comprising 194 from humans and 72 from other sources. We found that 72 of the 266 (27%) isolates were nonmotile, including 24.7% (48/194) of human and 33.3% (24/72) of food isolates. Among nonmotile isolates, 15 carried the T551 → G mutation and, significantly, 13 were recovered from food, including 7 from eggs, but only 2 were from human sources. These results suggest that the presence of paralyzed flagella may impair the ability of S. Enteritidis to cause disease in the human host but does not prevent its ability to colonize chickens and infect eggs.


Infection and Immunity | 2014

Repression of Flagella Is a Common Trait in Field Isolates of Salmonella enterica Serovar Dublin and Is Associated with Invasive Human Infections

Lucía Yim; Sebastián Sasías; Arací Martínez; Laura Betancor; Veronica Estevez; Paola Scavone; Alejandro Bielli; Alfredo Sirok; José A. Chabalgoity

ABSTRACT The nontyphoidal Salmonella enterica serovar Dublin is adapted to cattle but infrequently infects humans, very often resulting in invasive infections with high levels of morbidity and mortality. A Salmonella-induced intestinal acute inflammatory response is postulated as a mechanism to prevent bacterial dissemination to systemic sites. In S. enterica serovar Typhimurium, flagella contribute to this response by providing motility and FliC-mediated activation of pattern recognition receptors. In this study, we found 4 Salmonella enterica isolates, with the antigenic formula 9,12:−:−, that, based on fliC sequence and multilocus sequence type (MLST) analyses, are aflagellate S. Dublin isolates. Interestingly, all were obtained from human bloodstream infections. Thus, we investigated the potential role of flagella in the unusual invasiveness exhibited by S. Dublin in humans by analyzing flagellation and proinflammatory properties of a collection of 10 S. Dublin human clinical isolates. We found that 4 of 7 blood isolates were aflagellate due to significantly reduced levels of fliC expression, whereas all 3 isolates from other sources were flagellated. Lack of flagella correlated with a reduced ability of triggering interleukin-8 (IL-8) and CCL20 chemokine expression in human intestinal Caco-2 cells and with reduced early inflammation in the ceca of streptomycin-pretreated C57/BL6 mice. These results indicate that flagella contribute to the host intestinal inflammatory response to Salmonella serovar Dublin and suggest that their absence may contribute to its systemic dissemination through dampening of the gut immune response. Analysis of FliC production in a collection of cattle isolates indicated that the aflagellate phenotype is widely distributed in field isolates of S. Dublin.


Journal of global antimicrobial resistance | 2013

Identification of the first blaCMY-2 gene in Salmonella enterica serovar Typhimurium isolates obtained from cases of paediatric diarrhoea illness detected in South America

Nicolás F. Cordeiro; Lucía Yim; Laura Betancor; Daniela Cejas; Virginia García-Fulgueiras; María Inés Mota; Gustavo Varela; Leonardo Anzalone; Gabriela Algorta; Gabriel Gutkind; Juan A. Ayala; José A. Chabalgoity; Rafael Vignoli

The objectives of this study were to investigate clinical isolates of Salmonella enterica serovar Typhimurium resistant to β-lactam antibiotics, to characterise their mechanisms of antibiotic resistance and to evaluate the possible biological cost of expressing resistance genes. Two oxyimino-cephalosporin-resistant Salmonella isolates obtained from children with diarrhoea were characterised. The occurrence of plasmid-encoded blaCMY-2 genes was confirmed by molecular methods and conjugation assays; transcription levels were determined by quantitative real-time PCR (qRT-PCR). The genomic context of the β-lactamases, replicon type and addiction systems were analysed by PCR. Genomic relatedness of both isolates was studied by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) assays. Growth curves, motility and invasiveness assays in Caco-2 cells were performed to analyse the bacterial fitness of both isolates. Both isolates carried a blaCMY-2-like allele in an IncI plasmid and belonged to the same MLST sequence type (ST19); nevertheless, they showed extensive differences in their PFGE profiles and virulotypes. Isolate STM709 appeared to lack the Salmonella virulence plasmid and displayed less motility and invasiveness in cultured cells than isolate STM910. qRT-PCR showed that isolate STM709 had higher blaCMY-2 mRNA levels compared with STM910. Altogether, the results suggest that a plasmid carrying blaCMY-2 could be disseminating among different clones of S. Typhimurium. Different levels of blaCMY-2 mRNA could have an effect on the fitness of this micro-organism, resulting in lower invasiveness and motility.


Antimicrobial Agents and Chemotherapy | 2014

Synthesis of metallo-β-lactamase VIM-2 is associated with a fitness reduction in Salmonella enterica Serovar Typhimurium.

Nicolás F. Cordeiro; José A. Chabalgoity; Lucía Yim; Rafael Vignoli

ABSTRACT Antibiotic resistance, especially due to β-lactamases, has become one of the main obstacles in the correct treatment of Salmonella infections; furthermore, antibiotic resistance determines a gain of function that may encompass a biological cost, or fitness reduction, to the resistant bacteria. The aim of this work was to determine in vitro if the production of the class B β-lactamase VIM-2 determined a fitness cost for Salmonella enterica serovar Typhimurium. To that end the gene blaVIM-2 was cloned into the virulent strain S. Typhimurium SL1344, using both the tightly regulated pBAD22 vector and the natural plasmid pST12, for inducible and constitutive expression, respectively. Fitness studies were performed by means of motility, growth rate, invasiveness in epithelial cells, and plasmid stability. The expression of blaVIM-2 was accompanied by alterations in micro- and macroscopic morphology and reduced growth rate and motility, as well as diminished invasiveness in epithelial cells. These results suggest that VIM-2 production entails a substantial fitness cost for S. Typhimurium, which in turn may account for the extremely low number of reports of metallo-β-lactamase-producing Salmonella spp.


mAbs | 2015

Increasing the potency of neutralizing single-domain antibodies by functionalization with a CD11b/CD18 binding domain

Martín Rossotti; Andrés González-Techera; Julio Guarnaschelli; Lucía Yim; Ximena Camacho; Marcelo Fernández; Pablo Cabral; Carmen Leizagoyen; José A. Chabalgoity; Gualberto González-Sapienza

Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (˜30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera.

Collaboration


Dive into the Lucía Yim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arací Martínez

Centro Hospitalario Pereira Rossell

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy V. Nalls

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge