Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucie Vizor is active.

Publication


Featured researches published by Lucie Vizor.


Nature Genetics | 2000

A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse.

Patrick M. Nolan; Jo Peters; Mark Strivens; Derek Rogers; Jim J. Hagan; Nigel K. Spurr; Ian C. Gray; Lucie Vizor; Debra Brooker; Elaine Whitehill; Rebecca Washbourne; Tertius Hough; Simon Greenaway; Mazda Hewitt; Xinhong Liu; Stefan L. McCormack; Karen Pickford; Rachael Selley; Christine A. Wells; Zuzanna Tymowska-Lalanne; Phil Roby; Peter H. Glenister; Claire E. Thornton; Caroline Thaung; Julie-Anne Stevenson; Ruth M. Arkell; Philomena Mburu; Rachel E. Hardisty; Amy E. Kiernan; Alexandra Erven

As the human genome project approaches completion, the challenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea (ENU) represent a potentially efficient route for the generation of large numbers of mutant mice that can be screened for novel phenotypes. The advantage of this approach is that, in assessing gene function, no a priori assumptions are made about the genes involved in any pathway. Phenotype-driven mutagenesis is thus an effective method for the identification of novel genes and pathways. We have undertaken a genome-wide, phenotype-driven screen for dominant mutations in the mouse. We generated and screened over 26,000 mice, and recovered some 500 new mouse mutants. Our work, along with the programme reported in the accompanying paper, has led to a substantial increase in the mouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.


Mammalian Genome | 2004

A gene-driven ENU-based approach to generating an allelic series in any gene

Mohamed Mohideen Quwailid; Alison Hugill; Neil Dear; Lucie Vizor; Sara Wells; Emma Horner; Shelly Fuller; Jessica Weedon; Hamish McMath; Paul Woodman; David Edwards; David G. Campbell; Susan Rodger; Joanne Carey; Ann Roberts; Pete Glenister; Zuzanna Lalanne; Nick Parkinson; Emma L. Coghill; Richard McKeone; Sam Cox; John Willan; Andy Greenfield; David A. Keays; Saffron Brady; Nigel K Spurr; Ian Gray; Jackie Hunter; Steve D.M. Brown; Roger D. Cox

N-ethyl-N-nitrosourea (ENU) introduces mutations throughout the mouse genome at relatively high efficiency. Successful high-throughput phenotype screens have been reported and alternative screens using sequence-based approaches have been proposed. For the purpose of generating an allelic series in selected genes by a sequence-based approach, we have constructed an archive of over 4000 DNA samples from individual F1 ENU-mutagenized mice paralleled by frozen sperm samples. Together with our previously reported archive, the total size now exceeds 6000 individuals. A gene-based screen of 27.4 Mbp of DNA, carried out using denaturing high-performance liquid chromatography (DHPLC), found a mutation rate of 1 in 1.01 Mbp of which 1 in 1.82 Mbp were potentially functional. Screening of whole or selected regions of genes on subsets of the archive has allowed us to identify 15 new alleles from 9 genes out of 15 tested. This is a powerful adjunct to conventional mutagenesis strategies and has the advantage of generating a variety of alleles with potentially different phenotypic outcomes that facilitate the investigation of gene function. It is now available to academic collaborators as a community resource.


Mammalian Genome | 2000

Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource

Patrick M. Nolan; Jo Peters; Lucie Vizor; Mark Strivens; Rebecca Washbourne; Tertius Hough; Christine A. Wells; Peter H. Glenister; Claire E. Thornton; Jo Martin; Elizabeth M. C. Fisher; Derek Rogers; Jim J. Hagan; Charlie Reavill; Ian C. Gray; John Wood; Nigel K. Spurr; Mick Browne; Sohaila Rastan; Jackie Hunter; Steve D.M. Brown

Abstract. Systematic approaches to mouse mutagenesis will be vital for future studies of gene function. We have begun a major ENU mutagenesis program incorporating a large genome-wide screen for dominant mutations. Progeny of ENU-mutagenized mice are screened for visible defects at birth and weaning, and at 5 weeks of age by using a systematic and semi-quantitative screening protocol—SHIRPA. Following this, mice are screened for abnormal locomotor activity and for deficits in prepulse inhibition of the acoustic startle response. Moreover, in the primary screen, blood is collected from mice and subjected to a comprehensive clinical biochemical analysis. Subsequently, secondary and tertiary screens of increasing complexity can be used on animals demonstrating deficits in the primary screen. Frozen sperm is archived from all the male mice passing through the screen. In addition, tail tips are stored for DNA. Overall, the program will provide an extensive new resource of mutant and phenotype data to the mouse and human genetics communities at large. The challenge now is to employ the expanding mouse mutant resource to improve the mutant map of the mouse. An improved mutant map of the mouse will be an important asset in exploiting the growing gene map of the mouse and assisting with the identification of genes underlying novel mutations—with consequent benefits for the analysis of gene function and the identification of novel pathways.


Mammalian Genome | 2002

Novel phenotypes identified by plasma biochemical screening in the mouse

Tertius Hough; Patrick M. Nolan; Vicky Tsipouri; Ayo A. Toye; Ian C. Gray; Michelle Goldsworthy; Lee Moir; Roger D. Cox; Sian Clements; Peter H. Glenister; John Wood; Rachael Selley; Mark Strivens; Lucie Vizor; Stefan L. McCormack; Josephine Peters; Elizabeth M. C. Fisher; Nigel K. Spurr; Sohaila Rastan; Joanne E. Martin; Steve D.M. Brown; A. Jacqueline Hunter

We used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for both gene function studies and use as new animal models of human disease (Nolan et al. 2000b). One focus of the program was the development of a blood biochemistry screen. At 8–12 weeks of age, approximately 300 ml of blood was collected from F1 offspring of ENU mutagenized male mice. This yielded approximately 125 ml of plasma, used to perform a profile of 17 standard biochemical tests on an Olympus analyzer. Cohorts of F1 mice were also aged and then retested to detect late onset phenotypes. In total, 1,961 F1s were screened. Outliers were identified by running means and standard deviations. Of 70 mice showing consistent abnormalities in plasma biochemistry, 29 were entered into inheritance testing. Of these, 9 phenotypes were confirmed as inherited, 10 found not to be inherited, and 10 are still being tested. Inherited mutant phenotypes include abnormal lipid profiles (low total and HDL cholesterol, high triglycerides); abnormalities in bone and liver metabolism (low ALP, high ALP, high ALT, and AST); abnormal plasma electrolyte levels (high sodium and chloride); as well as phenotypes of interest for the study of diabetes (high glucose). The gene loci bearing the mutations are currently being mapped and further characterized. Our results have validated our biochemical screen, which is applicable to other mutagenesis projects, and we have produced a new set of mutants with defined metabolic phenotypes.


Journal of Clinical Investigation | 2014

Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features.

Valter Tucci; Tjitske Kleefstra; Andrea Hardy; Ines Heise; Silvia Maggi; Marjolein H. Willemsen; Helen Hilton; Chris Esapa; Michelle Simon; Maria T. Buenavista; Liam J. McGuffin; Lucie Vizor; Luca Dodero; Sotirios A. Tsaftaris; Rosario Romero; Willy N. Nillesen; Lisenka E L M Vissers; Marlies J. Kempers; Anneke T. Vulto-van Silfhout; Zafar Iqbal; Marta Orlando; Alessandro Maccione; Glenda Lassi; Pasqualina Farisello; Andrea Contestabile; Federico Tinarelli; Thierry Nieus; Andrea Raimondi; Barbara Greco; Daniela Cantatore

The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults.


PLOS Genetics | 2011

HIF-VEGF Pathways Are Critical for Chronic Otitis Media in Junbo and Jeff Mouse Mutants

Michael Cheeseman; Hayley E. Tyrer; Debbie Williams; Tertius Hough; Paras Pathak; Maria R. Romero; Helen Hilton; Sulzhan Bali; Andrew E. Parker; Lucie Vizor; Tom Purnell; Kate Vowell; Sara Wells; Mahmood F. Bhutta; Paul K. Potter; Steve D.M. Brown

Otitis media with effusion (OME) is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF) mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006) and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF–mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF–mediated pathways, and we conclude that targeting molecules in HIF–VEGF signaling pathways has therapeutic potential in the treatment of chronic OM.


Journal of Bone and Mineral Research | 2007

Novel mouse model of autosomal semidominant adult Hypophosphatasia has a splice site mutation in the tissue nonspecific alkaline phosphatase gene Akp2

Tertius Hough; Monika Polewski; Kristen Johnson; Michael Cheeseman; Patrick M. Nolan; Lucie Vizor; Sohaila Rastan; A. Boyde; Kenneth P.H. Pritzker; A. Jackie Hunter; Elizabeth M. C. Fisher; Robert Terkeltaub; Steve D.M. Brown

Deactivating mutations in the TNSALP gene cause HPP. Akp2−/− mice model severe infantile HPP, but there is no model for the relatively mild adult form. Here we report on mice with an induced mutation in Akp2 that affects splicing. The phenotype of homozygotes mirror aspects of the adult form of HPP.


Genetica | 2004

Towards a mutant map of the mouse – new models of neurological, behavioural, deafness, bone, renal and blood disorders

Sohaila Rastan; Tertius Hough; A. Kierman; Rachel E. Hardisty; Alexandra Erven; Ic Gray; S. Voeling; Adrian M. Isaacs; H. Tsai; Mark Strivens; Rebecca Washbourne; Claire E. Thornton; Simon Greenaway; Mazda Hewitt; S. McCormick; Rachael Selley; Christine A. Wells; Zuzanna Tymowska-Lalanne; Phil Roby; Philomena Mburu; Derek Rogers; Jim J. Hagan; Charlie Reavill; Kay E. Davies; Peter H. Glenister; Elizabeth M. C. Fisher; Joanne E. Martin; Lucie Vizor; M. Bouzyk; David P. Kelsell

With the completion of the first draft of the human genome sequence, the next major challenge is assigning function to genes. One approach is genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes of interest and subsequent mapping and identification of the mutated genes in question. We (a consortium made up of GlaxoSmithKline, the MRC Mammalian Genetics Unit and Mouse Genome Centre, Harwell, Imperial College, London, and the Royal London Hospital) have used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for use as animal models of human disease and for gene function assignment (Nolan et al., 2000). As of 2003, 35,000 mice have been produced to date in a genome-wide screen for dominant mutations and screened using a variety of screening protocols. Nearly 200 mutants have been confirmed as heritable and added to the mouse mutant catalogue and, overall, we can extrapolate that we have recovered over 700 mutants from the screening programme. For further information on the project and details of the data, see http://www.mgu.har.mrc.ac.uk/mutabase.


Journal of Biological Rhythms | 2017

Inducible Knockout of Mouse Zfhx3 Emphasizes Its Key Role in Setting the Pace and Amplitude of the Adult Circadian Clock

Ashleigh Wilcox; Lucie Vizor; Michael J. Parsons; Gareth Banks; Patrick M. Nolan

The transcription factor zinc finger homeobox 3 (ZFHX3) plays a key role in coupling intracellular transcriptional-translational oscillations with intercellular synchrony in mouse suprachiasmatic nucleus (SCN). However, like many key players in central nervous system function, ZFHX3 serves an important role in neurulation and neuronal terminal differentiation while retaining discrete additional functions in the adult SCN. Recently, using a dominant missense mutation in mouse Zfhx3, we established that this gene can modify circadian period and sleep in adult animals. Nevertheless, we were still concerned that the neurodevelopmental consequences of ZFHX3 dysfunction in this mutant may interfere with, or confound, its critical adult-specific roles in SCN circadian function. To circumvent the developmental consequences of Zfhx3 deletion, we crossed a conditional null Zfhx3 mutant to an inducible, ubiquitously expressed Cre line (B6.Cg-Tg(UBC-cre/ERT2)1Ejb/J). This enabled us to assess circadian behavior in the same adult animals both before and after Cre-mediated excision of the critical Zfhx3 exons using tamoxifen treatment. Remarkably, we found a strong and significant alteration in circadian behavior in tamoxifen-treated homozygous animals with no phenotypic changes in heterozygous or control animals. Cre-mediated excision of Zfhx3 critical exons in adult animals resulted in shortening of the period of wheel-running in constant darkness by more than 1 h in the majority of homozygotes while, in 30% of animals, excision resulted in complete behavioral arrhythmicity. In addition, we found that homozygous animals reentrain almost immediately to 6-h phase advances in the light-dark cycle. No additional overt phenotypic changes were evident in treated homozygous animals. These findings confirm a sustained and significant role for ZFHX3 in maintaining rhythmicity in the adult mammalian circadian system.


Comparative and Functional Genomics | 2004

Three novel pigmentation mutants generated by genome-wide random ENU mutagenesis in the mouse.

Vicky Tsipouri; John A. Curtin; Pat M. Nolan; Lucie Vizor; Claire A. Parsons; Colin M. Clapham; Ian D. Latham; Lesley J. Rooke; Jo Martin; Jo Peters; A. Jackie Hunter; Derek Rogers; Sohaila Rastan; Steve D.M. Brown; Elizabeth M. C. Fisher; Nigel K. Spurr; Ian C. Gray

Three mutant mice with pigmentation phenotypes were recovered from a genomewide random mouse chemical mutagenesis study. White toes (Whto; MGI:1861986), Belly spot and white toes (Bswt; MGI:2152776) and Dark footpads 2 (Dfp2; MGI:1861991) were identified following visual inspection of progeny from a male exposed to the point mutagen ethylnitrosourea (ENU). In order to rapidly localize the causative mutations, genome-wide linkage scans were performed on pooled DNA samples from backcross animals for each mutant line. Whto was mapped to proximal mouse chromosome (Mmu) 7 between Cen (the centromere) and D7Mit112 (8.0 cM from the centromere), Bswt was mapped to centric Mmul between D1Mit214 (32.1 cM) and D1Mit480 (32.8 cM) and Dfp2 was mapped to proximalMmu4 between Cen and D4Mit18 (5.2 cM). Whto, Bswt and Dfp2 may provide novel starting points in furthering the elucidation of genetic and biochemical pathways relevant to pigmentation and associated biological processes.

Collaboration


Dive into the Lucie Vizor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tertius Hough

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jo Peters

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Mark Strivens

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Jo Martin

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge