Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucilla Luzi is active.

Publication


Featured researches published by Lucilla Luzi.


The EMBO Journal | 2001

The tripartite motif family identifies cell compartments

Alexandre Reymond; Germana Meroni; Anna Fantozzi; Giuseppe Merla; Stefano Cairo; Lucilla Luzi; Daniela Riganelli; Elena Zanaria; Silvia Messali; Silvia Cainarca; Alessandro Guffanti; Saverio Minucci; Pier Giuseppe Pelicci; Andrea Ballabio

A functional genomic approach, based on systematic data gathering, was used to characterize a family of proteins containing a tripartite motif (TRIM). A total of 37 TRIM genes/proteins were studied, 21 of which were novel. The results demonstrate that TRIM proteins share a common function: by means of homo‐multimerization they identify specific cell compartments.


Cell | 2005

Electron transfer between cytochrome C and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis

Marco Giorgio; Enrica Migliaccio; Francesca Orsini; Demis Paolucci; Maurizio Moroni; Cristina Contursi; Giovanni Pelliccia; Lucilla Luzi; Saverio Minucci; Massimo Marcaccio; Paolo Pinton; Rosario Rizzuto; Paolo Bernardi; Francesco Paolucci; Pier Giuseppe Pelicci

Reactive oxygen species (ROS) are potent inducers of oxidative damage and have been implicated in the regulation of specific cellular functions, including apoptosis. Mitochondrial ROS increase markedly after proapoptotic signals, though the biological significance and the underlying molecular mechanisms remain undetermined. P66Shc is a genetic determinant of life span in mammals, which regulates ROS metabolism and apoptosis. We report here that p66Shc is a redox enzyme that generates mitochondrial ROS (hydrogen peroxide) as signaling molecules for apoptosis. For this function, p66Shc utilizes reducing equivalents of the mitochondrial electron transfer chain through the oxidation of cytochrome c. Redox-defective mutants of p66Shc are unable to induce mitochondrial ROS generation and swelling in vitro or to mediate mitochondrial apoptosis in vivo. These data demonstrate the existence of alternative redox reactions of the mitochondrial electron transfer chain, which evolved to generate proapoptotic ROS in response to specific stress signals.


Journal of Clinical Investigation | 2003

Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair

Myriam Alcalay; Natalia Meani; Vania Gelmetti; Anna Fantozzi; Marta Fagioli; Annette Orleth; Daniela Riganelli; Carla Sebastiani; Enrico Cappelli; Cristina Casciari; Maria Teresa Sciurpi; Angela Rosa Mariano; Simone P. Minardi; Lucilla Luzi; Heiko Müller; Pier Paolo Di Fiore; Guido Frosina; Pier Giuseppe Pelicci

Acute myelogenous leukemias (AMLs) are genetically heterogeneous and characterized by chromosomal rearrangements that produce fusion proteins with aberrant transcriptional regulatory activities. Expression of AML fusion proteins in transgenic mice increases the risk of myeloid leukemias, suggesting that they induce a preleukemic state. The underlying molecular and biological mechanisms are, however, unknown. To address this issue, we performed a systematic analysis of fusion protein transcriptional targets. We expressed AML1/ETO, PML/RAR, and PLZF/RAR in U937 hemopoietic precursor cells and measured global gene expression using oligonucleotide chips. We identified 1,555 genes regulated concordantly by at least two fusion proteins that were further validated in patient samples and finally classified according to available functional information. Strikingly, we found that AML fusion proteins induce genes involved in the maintenance of the stem cell phenotype and repress DNA repair genes, mainly of the base excision repair pathway. Functional studies confirmed that ectopic expression of fusion proteins constitutively activates pathways leading to increased stem cell renewal (e.g., the Jagged1/Notch pathway) and provokes accumulation of DNA damage. We propose that expansion of the stem cell compartment and induction of a mutator phenotype are relevant features underlying the leukemic potential of AML-associated fusion proteins.


Current Opinion in Genetics & Development | 2000

Evolution of Shc functions from nematode to human

Lucilla Luzi; Stefano Confalonieri; Pier Paolo Di Fiore; Pier Giuseppe Pelicci

The Shc protein family is characterized by the (CH2)-PTB-CH1-SH2 modularity. Its complexity increased during evolution from one locus in Drosophila (dShc), to at least three loci in mammals (shc, rai and sli). The three mammalian loci encode, because of alternative initiation codon usage and splicing pattern, at least six Shc-like proteins. Genetic and biological evidence indicates that the mammalian Shc isoforms regulate functions as diverse as growth (p52/p46Shc), apoptosis (p66Shc) and life-span (p66Shc). Available structure-function data and analysis of sequence similarities of Shc-like genes and proteins suggest complex diversification of Shc functions during evolution. Notably, Ras activation, the best-characterized Shc activity, appears to be a recent evolutionary acquisition.


Cancer Research | 2006

Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant.

Emanuela Colombo; Paola Martinelli; Raffaella Zamponi; D. Shing; Paola Bonetti; Lucilla Luzi; Sara Volorio; Loris Bernard; Giancarlo Pruneri; Myriam Alcalay; Pier Giuseppe Pelicci

One third of acute myeloid leukemias (AMLs) are characterized by the aberrant cytoplasmic localization of nucleophosmin (NPM) due to mutations within its putative nucleolar localization signal. NPM mutations are mutually exclusive with major AML-associated chromosome rearrangements and are frequently associated with a normal karyotype, suggesting that they are critical during leukemogenesis. The underlying molecular mechanisms are, however, unknown. NPM is a nucleocytoplasmic shuttling protein that has been implicated in several cellular processes, including ribosome biogenesis, centrosome duplication, cell cycle progression, and stress response. It has been recently shown that NPM is required for the stabilization and proper nucleolar localization of the tumor suppressor p19(Arf). We report here that the AML-associated NPM mutant localizes mainly in the cytoplasm due to an alteration of its nucleus-cytoplasmic shuttling equilibrium, forms a direct complex with p19(Arf), but is unable to protect it from degradation. Consequently, cells or leukemic blasts expressing the NPM mutant have low levels of cytoplasmic Arf. Furthermore, we show that expression of the NPM mutant reduces the ability of Arf to initiate a p53 response and to induce cell cycle arrest. Inactivation of p19(Arf), a key regulator of the p53-dependent cellular response to oncogene expression, might therefore contribute to leukemogenesis in AMLs with mutated NPM.


PLOS ONE | 2009

Transcription Factor Binding Sites Are Genetic Determinants of Retroviral Integration in the Human Genome

Barbara Felice; Claudia Cattoglio; Davide Cittaro; Anna Testa; Annarita Miccio; Giuliana Ferrari; Lucilla Luzi; Fulvio Mavilio

Gamma-retroviruses and lentiviruses integrate non-randomly in mammalian genomes, with specific preferences for active chromatin, promoters and regulatory regions. Gene transfer vectors derived from gamma-retroviruses target at high frequency genes involved in the control of growth, development and differentiation of the target cell, and may induce insertional tumors or pre-neoplastic clonal expansions in patients treated by gene therapy. The gene expression program of the target cell is apparently instrumental in directing gamma-retroviral integration, although the molecular basis of this phenomenon is poorly understood. We report a bioinformatic analysis of the distribution of transcription factor binding sites (TFBSs) flanking >4,000 integrated proviruses in human hematopoietic and non-hematopoietic cells. We show that gamma-retroviral, but not lentiviral vectors, integrate in genomic regions enriched in cell-type specific subsets of TFBSs, independently from their relative position with respect to genes and transcription start sites. Analysis of sequences flanking the integration sites of Moloney leukemia virus (MLV)- and human immunodeficiency virus (HIV)-derived vectors carrying mutations in their long terminal repeats (LTRs), and of HIV vectors packaged with an MLV integrase, indicates that the MLV integrase and LTR enhancer are the viral determinants of the selection of TFBS-rich regions in the genome. This study identifies TFBSs as differential genomic determinants of retroviral target site selection in the human genome, and suggests that transcription factors binding the LTR enhancer may synergize with the integrase in tethering retroviral pre-integration complexes to transcriptionally active regulatory regions. Our data indicate that gamma-retroviruses and lentiviruses have evolved dramatically different strategies to interact with the host cell chromatin, and predict a higher risk in using gamma-retroviral vs. lentiviral vectors for human gene therapy applications.


Genome Research | 2013

Genome-wide mapping of human DNA-replication origins: Levels of transcription at ORC1 sites regulate origin selection and replication timing

Gaetano Ivan Dellino; Davide Cittaro; Rossana Piccioni; Lucilla Luzi; Stefania Banfi; Simona Segalla; Matteo Cesaroni; Ramiro Mendoza-Maldonado; Mauro Giacca; Pier Giuseppe Pelicci

We report the genome-wide mapping of ORC1 binding sites in mammals, by chromatin immunoprecipitation and parallel sequencing (ChIP-seq). ORC1 binding sites in HeLa cells were validated as active DNA replication origins (ORIs) using Repli-seq, a method that allows identification of ORI-containing regions by parallel sequencing of temporally ordered replicating DNA. ORC1 sites were universally associated with transcription start sites (TSSs) of coding or noncoding RNAs (ncRNAs). Transcription levels at the ORC1 sites directly correlated with replication timing, suggesting the existence of two classes of ORIs: those associated with moderate/high transcription levels (≥1 RNA copy/cell), firing in early S and mapping to the TSSs of coding RNAs; and those associated with low transcription levels (<1 RNA copy/cell), firing throughout the entire S and mapping to TSSs of ncRNAs. These findings are compatible with a scenario whereby TSS expression levels influence the efficiency of ORC1 recruitment at G(1) and the probability of firing during S.


PLOS Genetics | 2008

AML1/ETO Oncoprotein Is Directed to AML1 Binding Regions and Co-Localizes with AML1 and HEB on Its Targets

Alessandro Gardini; Matteo Cesaroni; Lucilla Luzi; Akiko Joo Okumura; Joseph R. Biggs; Simone P. Minardi; Elisa Venturini; Dong-Er Zhang; Pier Giuseppe Pelicci; Myriam Alcalay

A reciprocal translocation involving chromosomes 8 and 21 generates the AML1/ETO oncogenic transcription factor that initiates acute myeloid leukemia by recruiting co-repressor complexes to DNA. AML1/ETO interferes with the function of its wild-type counterpart, AML1, by directly targeting AML1 binding sites. However, transcriptional regulation determined by AML1/ETO probably relies on a more complex network, since the fusion protein has been shown to interact with a number of other transcription factors, in particular E-proteins, and may therefore target other sites on DNA. Genome-wide chromatin immunoprecipitation and expression profiling were exploited to identify AML1/ETO-dependent transcriptional regulation. AML1/ETO was found to co-localize with AML1, demonstrating that the fusion protein follows the binding pattern of the wild-type protein but does not function primarily by displacing it. The DNA binding profile of the E-protein HEB was grossly rearranged upon expression of AML1/ETO, and the fusion protein was found to co-localize with both AML1 and HEB on many of its regulated targets. Furthermore, the level of HEB protein was increased in both primary cells and cell lines expressing AML1/ETO. Our results suggest a major role for the functional interaction of AML1/ETO with AML1 and HEB in transcriptional regulation determined by the fusion protein.


Cancer Research | 2007

RaLP, a New Member of the Src Homology and Collagen Family, Regulates Cell Migration and Tumor Growth of Metastatic Melanomas

Ernesta Fagiani; Giuseppina Giardina; Lucilla Luzi; Matteo Cesaroni; Micaela Quarto; Maria Capra; Giovanni Germano; María Rosa Bono; Manuela Capillo; Pier Giuseppe Pelicci; Luisa Lanfrancone

The Src homology and collagen (Src) family of adaptor proteins comprises six Shc-like proteins encoded by three loci in mammals (Shc, Rai, and Sli). Shc-like proteins are tyrosine kinase substrates, which regulate diverse signaling pathways and cellular functions, including Ras and proliferation (p52/p46Shc), phosphatidylinositol 3-kinase and survival (p54Rai), and mitochondrial permeability transition and apoptosis (p66Shc). Here, we report the identification, cloning, and sequence characterization of a new member of the Shc family that we termed RaLP. RaLP encodes a 69-kDa protein characterized by the CH2-PTB-CH1-SH2 modularity, typical of the Shc protein family, and expressed, among adult tissues, only in melanomas. Analysis of RaLP expression during the melanoma progression revealed low expression in normal melanocytes and benign nevi, whereas high levels of RaLP protein were found at the transition from radial growth phase to vertical growth phase and metastatic melanomas, when tumor cells acquire migratory competence and invasive potential. Notably, silencing of RaLP expression in metastatic melanomas by RNA interference reduced tumorigenesis in vivo. Analysis of RaLP in melanoma signal transduction pathways revealed that (a) when ectopically expressed in RaLP-negative melanocytes and nonmetastatic melanoma cells, it functions as a substrate of activated insulin-like growth factor-1 and epidermal growth factor receptors and increases Ras/mitogen-activated protein kinase (MAPK) signaling and cell migration, whereas (b) its silencing in RaLP-positive melanoma cells abrogates cell migration in vitro, without affecting MAPK signaling, suggesting that RaLP activates both Ras-dependent and Ras-independent migratory pathways in melanomas. These findings indicate that RaLP is a specific marker of metastatic melanomas, a critical determinant in the acquisition of the migratory phenotype by melanoma cells, and a potential target for novel anti-melanoma therapeutic strategies.


Aging Cell | 2013

Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging.

Valentina Gambino; Giulia De Michele; Oriella Venezia; Pierluigi Migliaccio; Valentina Dall'Olio; Loris Bernard; Simone P. Minardi; Maria Agnese Della Fazia; Daniela Bartoli; Giuseppe Servillo; Myriam Alcalay; Lucilla Luzi; Marco Giorgio; Heidi Scrable; Pier Giuseppe Pelicci; Enrica Migliaccio

Oxidative stress is a determining factor of cellular senescence and aging and a potent inducer of the tumour‐suppressor p53. Resistance to oxidative stress correlates with delayed aging in mammals, in the absence of accelerated tumorigenesis, suggesting inactivation of selected p53‐downstream pathways. We investigated p53 regulation in mice carrying deletion of p66, a mutation that retards aging and confers cellular resistance and systemic resistance to oxidative stress. We identified a transcriptional network of ~200 genes that are repressed by p53 and encode for determinants of progression through mitosis or suppression of senescence. They are selectively down‐regulated in cultured fibroblasts after oxidative stress, and, in vivo, in proliferating tissues and during physiological aging. Selectivity is imposed by p66 expression and activation of p44/p53 (also named Delta40p53), a p53 isoform that accelerates aging and prevents mitosis after protein damage. p66 deletion retards aging and increases longevity of p44/p53 transgenic mice. Thus, oxidative stress activates a specific p53 transcriptional response, mediated by p44/p53 and p66, which regulates cellular senescence and aging.

Collaboration


Dive into the Lucilla Luzi's collaboration.

Top Co-Authors

Avatar

Pier Giuseppe Pelicci

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Loris Bernard

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Myriam Alcalay

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Laura Riva

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Giorgio E. M. Melloni

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Volorio

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Anna Russo

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Chiara Ronchini

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Daniela Diverio

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge