Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucy S. K. Walker is active.

Publication


Featured researches published by Lucy S. K. Walker.


Science | 2011

Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell Extrinsic Function of CTLA-4

Omar S. Qureshi; Yong Zheng; Kyoko Nakamura; Kesley Attridge; Claire N. Manzotti; Emily M. Schmidt; Jennifer Baker; Louisa E. Jeffery; Satdip Kaur; Zoe Briggs; Tie Z. Hou; Clare E. Futter; Graham Anderson; Lucy S. K. Walker; David M. Sansom

An inhibitory T cell receptor acts by stripping activating ligands off dendritic cells. Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an essential negative regulator of T cell immune responses whose mechanism of action is the subject of debate. CTLA-4 shares two ligands (CD80 and CD86) with a stimulatory receptor, CD28. Here, we show that CTLA-4 can capture its ligands from opposing cells by a process of trans-endocytosis. After removal, these costimulatory ligands are degraded inside CTLA-4–expressing cells, resulting in impaired costimulation via CD28. Acquisition of CD86 from antigen-presenting cells is stimulated by T cell receptor engagement and observed in vitro and in vivo. These data reveal a mechanism of immune regulation in which CTLA-4 acts as an effector molecule to inhibit CD28 costimulation by the cell-extrinsic depletion of ligands, accounting for many of the known features of the CD28–CTLA-4 system.


Journal of Experimental Medicine | 2003

Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo.

Lucy S. K. Walker; Anna Chodos; Mark P. Eggena; Hans Dooms; Abul K. Abbas

The failure of CD25+ regulatory T cells (Tregs) to proliferate after T cell receptor (TCR) stimulation in vitro has lead to their classification as naturally anergic. Here we use Tregs expressing a transgenic TCR to show that despite anergy in vitro, Tregs proliferate in response to immunization in vivo. Tregs also proliferate and accumulate locally in response to transgenically expressed tissue antigen whereas their CD25− counterparts are depleted at such sites. Collectively, these data suggest that the anergic state that characterizes CD25+ Tregs in vitro may not accurately reflect their responsiveness in vivo. These observations support a model in which Treg population dynamics are shaped by the local antigenic environment.


Journal of Immunology | 2009

1,25-Dihydroxyvitamin D3 and IL-2 Combine to Inhibit T Cell Production of Inflammatory Cytokines and Promote Development of Regulatory T Cells Expressing CTLA-4 and FoxP3

Louisa E. Jeffery; Fiona Burke; Manuela Mura; Yong Zheng; Omar S. Qureshi; Martin Hewison; Lucy S. K. Walker; David A. Lammas; Karim Raza; David M. Sansom

The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), has potent immunomodulatory properties that have promoted its potential use in the prevention and treatment of infectious disease and autoimmune conditions. A variety of immune cells, including macrophages, dendritic cells, and activated T cells express the intracellular vitamin D receptor and are responsive to 1,25(OH)2D3. Despite this, how 1,25(OH)2D3 regulates adaptive immunity remains unclear and may involve both direct and indirect effects on the proliferation and function of T cells. To further clarify this issue, we have assessed the effects of 1,25(OH)2D3 on human CD4+CD25− T cells. We observed that stimulation of CD4+CD25− T cells in the presence of 1,25(OH)2D3 inhibited production of proinflammatory cytokines including IFN- γ, IL-17, and IL-21 but did not substantially affect T cell division. In contrast to its inhibitory effects on inflammatory cytokines, 1,25(OH)2D3 stimulated expression of high levels of CTLA-4 as well as FoxP3, the latter requiring the presence of IL-2. T cells treated with 1,25(OH)2D3 could suppress proliferation of normally responsive T cells, indicating that they possessed characteristics of adaptive regulatory T cells. Our results suggest that 1,25(OH)2D3 and IL-2 have direct synergistic effects on activated T cells, acting as potent anti-inflammatory agents and physiologic inducers of adaptive regulatory T cells.


Nature Reviews Immunology | 2011

The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses

Lucy S. K. Walker; David M. Sansom

The T cell protein cytotoxic T lymphocyte antigen 4 (CTLA4) was identified as a crucial negative regulator of the immune system over 15 years ago, but its mechanisms of action are still under debate. It has long been suggested that CTLA4 transmits an inhibitory signal to the cells that express it. However, not all the available data fit with a cell-intrinsic function for CTLA4, and other studies have suggested that CTLA4 functions in a T cell-extrinsic manner. Here, we discuss the data for and against the T cell-intrinsic and -extrinsic functions of CTLA4.


Nature Medicine | 2014

Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations

Desirée Schubert; Claudia Bode; Rupert Kenefeck; Tie Zheng Hou; James B. Wing; Alan Kennedy; Alla Bulashevska; Britt-Sabina Petersen; Alejandro A. Schäffer; Björn Grüning; Susanne Unger; Natalie Frede; Ulrich Baumann; Torsten Witte; Reinhold E. Schmidt; Gregor Dueckers; Tim Niehues; Suranjith L. Seneviratne; Maria Kanariou; Carsten Speckmann; Stephan Ehl; Anne Rensing-Ehl; Klaus Warnatz; Mirzokhid Rakhmanov; Robert Thimme; Peter Hasselblatt; Florian Emmerich; Toni Cathomen; Rolf Backofen; Paul Fisch

The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses, and its loss causes fatal autoimmunity in mice. We studied a large family in which five individuals presented with a complex, autosomal dominant immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and multiple autoimmune clinical features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with previously undescribed splice site and missense mutations in CTLA4. Clinical penetrance was incomplete (eight adults of a total of 19 genetically proven CTLA4 mutation carriers were considered unaffected). However, CTLA-4 protein expression was decreased in regulatory T cells (Treg cells) in both patients and carriers with CTLA4 mutations. Whereas Treg cells were generally present at elevated numbers in these individuals, their suppressive function, CTLA-4 ligand binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating B cell numbers. Taken together, mutations in CTLA4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding result in disrupted T and B cell homeostasis and a complex immune dysregulation syndrome.


Immunological Reviews | 2006

The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology

David M. Sansom; Lucy S. K. Walker

Summary:  The profound influence of CD28 and cytotoxic T‐lymphocyte antigen‐4 (CTLA‐4) on T‐cell immunity has been known for over a decade, yet the precise roles played by these molecules still continue to emerge. Initially viewed as molecules that provide cell‐intrinsic costimulatory and inhibitory signals, recent evidence suggests that both CD28 and CTLA‐4 are also important in the homeostasis and function of a population of suppressive cells, termed regulatory T cells (Tregs). Here we review the main features of the CD28 and CTLA‐4 system and examine how these impact upon Treg biology.


Immunological Reviews | 2005

CTLA4 gene polymorphism and autoimmunity

S. C. L. Gough; Lucy S. K. Walker; David M. Sansom

Summary:  CD28 and cytotoxic T‐lymphocyte antigen‐4 (CTLA4) are two receptors that have critical but opposing functions in T‐cell stimulation. CD28 promotes a number of T‐cell activities, whereas in contrast CTLA4 is an essential inhibitor of T‐cell responses. Because of its inhibitory role, CTLA4 is a strong candidate susceptibility gene in autoimmunity and several studies suggest disease‐associated polymorphisms. In this review, we discuss recent progress in relating CTLA4 polymorphisms to disease susceptibility and consider the putative mechanisms by which CTLA4 may act to inhibit autoimmunity.


Journal of Immunology | 2006

Cutting edge: the phosphoinositide 3-kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells.

Daniel T. Patton; Oliver A. Garden; Wayne Pearce; Louise E. Clough; Clare R. Monk; Eva Leung; Wendy C. Rowan; Sara Sancho; Lucy S. K. Walker; Bart Vanhaesebroeck; Klaus Okkenhaug

CD4+CD25+Foxp3+ regulatory T cells (Tregs) contribute to the maintenance of peripheral tolerance by inhibiting the expansion and function of conventional T cells. Treg development and homeostasis are regulated by the Ag receptor, costimulatory receptors such as CD28 and CTLA-4, and cytokines such as IL-2, IL-10, and TGF-β. Here we show that the proportions of Tregs in the spleen and lymph nodes of mice with inactive p110δ PI3K (p110δD910A/D910A) are reduced despite enhanced Treg selection in the thymus. p110δD910A/D910A CD4+CD25+Foxp3+ Tregs showed attenuated suppressor function in vitro and failed to secrete IL-10. In adoptive transfer experiments, p110δD910A/D910A T cells failed to protect against experimental colitis. The identification of p110δ as an intracellular signaling protein that regulates the activity of CD4+CD25+Foxp3+ Tregs may facilitate the further elucidation of the molecular mechanisms responsible for Treg-mediated suppression.


Immunity | 2003

CD4+CD3− Accessory Cells Costimulate Primed CD4 T Cells through OX40 and CD30 at Sites Where T Cells Collaborate with B Cells

Mi‐Yeon Kim; Fabrina Gaspal; Helen E Wiggett; Fiona M. McConnell; Adam Gulbranson-Judge; Chandra Raykundalia; Lucy S. K. Walker; Margaret Goodall; Peter J. L. Lane

In this report we identify an accessory cell that interacts with primed and memory T cells at sites where they collaborate with B cells. These cells are distinguished from conventional dendritic cells by their lack of response to Flt3 ligand and their inability to process antigen. Unlike dendritic cells, the CD4(+)CD3(-) cells have little CD80 or CD86 expression but do express high levels of the TNF ligands, OX40 ligand and CD30 ligand. We show that Th2-primed cells express the receptors for these TNF ligands and preferentially survive when cocultured with these cells. Furthermore, we show that the preferential survival of OX40(+) T cells and support of memory T cell help for B cells are linked to their association with CD4(+)CD3(-) cells in vivo.


Journal of Immunology | 2010

Distinct Roles for CCR4 and CXCR3 in the Recruitment and Positioning of Regulatory T Cells in the Inflamed Human Liver

Ye Htun Oo; Chris J. Weston; Patricia F. Lalor; Stuart M. Curbishley; David R. Withers; Gary M. Reynolds; Shishir Shetty; Jehan Harki; Jean C. Shaw; Bertus Eksteen; Stefan G. Hubscher; Lucy S. K. Walker; David H. Adams

Regulatory T cells (Tregs) are found at sites of chronic inflammation where they mediate bystander and Ag-specific suppression of local immune responses. However, little is known about the molecular control of Treg recruitment into inflamed human tissues. We report that up to 18% of T cells in areas of inflammation in human liver disease are forkhead family transcriptional regulator box P3 (FoxP3)+ Tregs. We isolated CD4+CD25+CD127lowFoxP3+ Tregs from chronically inflamed human liver removed at transplantation; compared with blood-derived Tregs, liver-derived Tregs express high levels of the chemokine receptors CXCR3 and CCR4. In flow-based adhesion assays using human hepatic sinusoidal endothelium, Tregs used CXCR3 and α4β1 to bind and transmigrate, whereas CCR4 played no role. The CCR4 ligands CCL17 and CCL22 were absent from healthy liver, but they were detected in chronically inflamed liver where their expression was restricted to dendritic cells (DCs) within inflammatory infiltrates. These DCs were closely associated with CD8 T cells and CCR4+ Tregs in the parenchyma and septal areas. Ex vivo, liver-derived Tregs migrated to CCR4 ligands secreted by intrahepatic DCs. We propose that CXCR3 mediates the recruitment of Tregs via hepatic sinusoidal endothelium and that CCR4 ligands secreted by DCs recruit Tregs to sites of inflammation in patients with chronic hepatitis. Thus, different chemokine receptors play distinct roles in the recruitment and positioning of Tregs at sites of hepatitis in chronic liver disease.

Collaboration


Dive into the Lucy S. K. Walker's collaboration.

Top Co-Authors

Avatar

David M. Sansom

University College London

View shared research outputs
Top Co-Authors

Avatar

Chun Jing Wang

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abul K. Abbas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge