Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Omar S. Qureshi is active.

Publication


Featured researches published by Omar S. Qureshi.


Science | 2011

Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell Extrinsic Function of CTLA-4

Omar S. Qureshi; Yong Zheng; Kyoko Nakamura; Kesley Attridge; Claire N. Manzotti; Emily M. Schmidt; Jennifer Baker; Louisa E. Jeffery; Satdip Kaur; Zoe Briggs; Tie Z. Hou; Clare E. Futter; Graham Anderson; Lucy S. K. Walker; David M. Sansom

An inhibitory T cell receptor acts by stripping activating ligands off dendritic cells. Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an essential negative regulator of T cell immune responses whose mechanism of action is the subject of debate. CTLA-4 shares two ligands (CD80 and CD86) with a stimulatory receptor, CD28. Here, we show that CTLA-4 can capture its ligands from opposing cells by a process of trans-endocytosis. After removal, these costimulatory ligands are degraded inside CTLA-4–expressing cells, resulting in impaired costimulation via CD28. Acquisition of CD86 from antigen-presenting cells is stimulated by T cell receptor engagement and observed in vitro and in vivo. These data reveal a mechanism of immune regulation in which CTLA-4 acts as an effector molecule to inhibit CD28 costimulation by the cell-extrinsic depletion of ligands, accounting for many of the known features of the CD28–CTLA-4 system.


Journal of Immunology | 2009

1,25-Dihydroxyvitamin D3 and IL-2 Combine to Inhibit T Cell Production of Inflammatory Cytokines and Promote Development of Regulatory T Cells Expressing CTLA-4 and FoxP3

Louisa E. Jeffery; Fiona Burke; Manuela Mura; Yong Zheng; Omar S. Qureshi; Martin Hewison; Lucy S. K. Walker; David A. Lammas; Karim Raza; David M. Sansom

The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), has potent immunomodulatory properties that have promoted its potential use in the prevention and treatment of infectious disease and autoimmune conditions. A variety of immune cells, including macrophages, dendritic cells, and activated T cells express the intracellular vitamin D receptor and are responsive to 1,25(OH)2D3. Despite this, how 1,25(OH)2D3 regulates adaptive immunity remains unclear and may involve both direct and indirect effects on the proliferation and function of T cells. To further clarify this issue, we have assessed the effects of 1,25(OH)2D3 on human CD4+CD25− T cells. We observed that stimulation of CD4+CD25− T cells in the presence of 1,25(OH)2D3 inhibited production of proinflammatory cytokines including IFN- γ, IL-17, and IL-21 but did not substantially affect T cell division. In contrast to its inhibitory effects on inflammatory cytokines, 1,25(OH)2D3 stimulated expression of high levels of CTLA-4 as well as FoxP3, the latter requiring the presence of IL-2. T cells treated with 1,25(OH)2D3 could suppress proliferation of normally responsive T cells, indicating that they possessed characteristics of adaptive regulatory T cells. Our results suggest that 1,25(OH)2D3 and IL-2 have direct synergistic effects on activated T cells, acting as potent anti-inflammatory agents and physiologic inducers of adaptive regulatory T cells.


Molecular Pharmacology | 2007

Evidence for Functional P2X4/P2X7 Heteromeric Receptors

Chang Guo; Omar S. Qureshi; Ruth D. Murrell-Lagnado

The cytolytic ionotropic ATP receptor P2X7 has several important roles in immune cell regulation, such as cytokine release, apoptosis, and microbial killing. Although P2X7 receptors are frequently coexpressed with another subtype of P2X receptor, P2X4, they are believed not to form heteromeric assemblies but to function only as homomers. Both receptors play a role in neuropathic pain; therefore, understanding how they coordinate the cellular response to ATP is important for the development of effective pain therapies. Here, we provide biochemical and electrophysiological evidence for an association between P2X4 and P2X7 that increases the diversity of receptor currents mediated via these two subtypes. The heterologously expressed receptors were coimmunoprecipitated from human embryonic kidney (HEK) 293 cells, and the endogenous P2X4 and P2X7 receptors were similarly coimmunoprecipitated from bone marrow-derived macrophages. In HEK293 cells, the fraction of P2X4 receptors biotinylated at the plasma membrane increased 2-fold in the presence of P2X7 although there was no change in overall expression. Coexpression of a dominant-negative P2X4 mutant (C353W) with P2X7, inhibited P2X7 receptor mediated currents by greater than 2-fold, whereas a nonfunctional but non–dominant-negative mutant (S341W) did not. Coexpression of P2X4S341W with P2X7 produced a current that was potentiated by ivermectin and inhibited by 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5-triphosphate (TNP-ATP), whereas expression of P2X7 alone produced a current that was insensitive to both of these compounds at the concentrations used. These results demonstrate a structural and functional interaction between P2X4 and P2X7, which suggests that they associate to form heteromeric receptors.


Journal of Cell Science | 2007

Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis.

Omar S. Qureshi; Anbalakan Paramasivam; Jowie C. H. Yu; Ruth D. Murrell-Lagnado

The P2X4 receptor has a widespread distribution in the central nervous system and the periphery, and plays an important role in the function of immune cells and the vascular system. Its upregulation in microglia contributes to neuropathic pain following nerve injury. The mechanisms involved in its regulation are not well understood, although we have previously shown that it is constitutively retrieved from the plasma membrane and resides predominantly within intracellular compartments. Here, we show that the endogenous P2X4 receptors in cultured rat microglia, vascular endothelial cells and freshly isolated peritoneal macrophages are localized predominantly to lysosomes. Lysosomal targeting was mediated through a dileucine-type motif within the N-terminus, together with a previously characterized tyrosine-based endocytic motif within the C-terminus. P2X4 receptors remained stable within the proteolytic environment of the lysosome and resisted degradation by virtue of their N-linked glycans. Stimulation of phagocytosis triggered the accumulation of P2X4 receptors at the phagosome membrane. Stimulating lysosome exocytosis, either by incubating with the Ca2+ ionophore ionomycin, for normal rat kidney (NRK) cells and cultured rat microglia, or the weak base methylamine, for peritoneal macrophages, caused an upregulation of both P2X4 receptors and the lysosomal protein LAMP-1 at the cell surface. Lysosome exocytosis in macrophages potentiated ATP-evoked P2X4 receptor currents across the plasma membrane. Taken together, our data suggest that the P2X4 receptor retains its function within the degradative environment of the lysosome and can subsequently traffic out of lysosomes to upregulate its exposure at the cell surface and phagosome.


Journal of Immunology | 2009

Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity.

Emily M. Schmidt; Chun Jing Wang; Gemma A. Ryan; Louise E. Clough; Omar S. Qureshi; Margaret Goodall; Abul K. Abbas; Arlene H. Sharpe; David M. Sansom; Lucy S. K. Walker

The CTLA-4 pathway is recognized as a major immune inhibitory axis and is a key therapeutic target for augmenting antitumor immunity or curbing autoimmunity. CTLA-4-deficient mice provide the archetypal example of dysregulated immune homeostasis, developing lethal lymphoproliferation with multiorgan inflammation. In this study, we show that surprisingly these mice have an enlarged population of Foxp3+ regulatory T cells (Treg). The increase in Treg is associated with normal thymic output but enhanced proliferation of Foxp3+ cells in the periphery. We confirmed the effect of CTLA-4 deficiency on the Treg population using OVA-specific Treg which develop normally in the absence of CTLA-4, but show increased proliferation in response to peripheral self-Ag. Functional analysis revealed that Ag-specific Treg lacking CTLA-4 were unable to regulate disease in an adoptive transfer model of diabetes. Collectively, these data suggest that the proliferation of Treg in the periphery is tuned by CTLA-4 signals and that Treg expression of CTLA-4 is required for regulation of pancreas autoimmunity.


Hepatology | 2013

Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics

Evaggelia Liaskou; Henning W. Zimmermann; Ka-Kit Li; Ye Htun Oo; Shankar Suresh; Zania Stamataki; Omar S. Qureshi; Patricia F. Lalor; Jean Shaw; Wing-Kin Syn; Stuart M. Curbishley; David H. Adams

Liver fibrosis is a wound healing response to chronic liver injury and inflammation in which macrophages and infiltrating monocytes participate in both the development and resolution phase. In humans, three monocyte subsets have been identified: the classical CD14++CD16−, intermediate CD14++CD16+, and nonclassical CD14+CD16++ monocytes. We studied the phenotype and function of these monocyte subsets in peripheral blood and liver tissue from patients with chronic inflammatory and fibrotic liver diseases. The frequency of intrahepatic monocytes increased in disease compared with control liver tissue, and in both nondiseased and diseased livers there was a higher frequency of CD14++CD16+ cells with blood. Our data suggest two nonexclusive mechanisms of CD14++CD16+ accumulation in the inflamed liver: (1) recruitment from blood, because more than twice as many CD14++CD16+ monocytes underwent transendothelial migration through hepatic endothelial cells compared with CD14++CD16− cells; and (2) local differentiation from CD14++CD16− classical monocytes in response to transforming growth factor β and interleukin (IL)‐10. Intrahepatic CD14++CD16+ cells expressed both macrophage and dendritic cell markers but showed high levels of phagocytic activity, antigen presentation, and T cell proliferation and secreted proinflammatory (tumor necrosis factor α, IL‐6, IL‐8, IL‐1β) and profibrogenic cytokines (IL‐13), chemokines (CCL1, CCL2, CCL3, CCL5), and growth factors (granulocyte colony‐stimulating factor and granulocyte‐macrophage colony‐stimulating factor), consistent with a role in the wound healing response. Conclusion: Intermediate CD14++CD16+ monocytes preferentially accumulate in chronically inflamed human liver as a consequence of enhanced recruitment from blood and local differentiation from classical CD14++CD16− monocytes. Their phagocytic potential and ability to secrete inflammatory and profibrogenic cytokines suggests they play an important role in hepatic fibrogenesis. (HEPATOLOGY 2013)


BMC Immunology | 2008

ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages

Debasis Biswas; Omar S. Qureshi; Wing-Yiu Lee; Joanne E. Croudace; Manuela Mura; David A. Lammas

BackgroundWe have previously reported that ATP treatment of M bovis-BCG infected human macrophages induces P2X7 receptor-dependent killing of intracellular mycobacteria. The mechanism mediating this bactericidal effect has not been full characterized but is known to be Ca2+-dependent and to promote the maturation and acidification of mycobacteria-containing phagosomes. In this study we demonstrate that the ATP/P2X7-mediated, mycobactericidal effect also involves the induction of cell autophagy.ResultsWe report that 3 mM ATP induces rapid cell autophagy in THP1 cells and monocyte-derived macrophages within 30 minutes post-treatment, as revealed by the expression of LC3-II bands on western blot analysis. Using Ca2+-free media and selective P2X7 agonists and antagonists, ATP-induced cell autophagy was shown to be Ca2+ and P2X7 receptor-dependent. Electron microscopy of ATP-treated, BCG-infected MDMs revealed the presence of the bacteria within characteristic double-membraned autophagosomes. Confocal analysis further confirmed that pharmacological inhibition of autophagy by wortmannin or pre-treatment of macrophages with anti-P2X7 antibody blocked ATP-induced phago-lysosomal fusion. Induction of cell autophagy with ATP was also temporally associated with a fall in intracellular mycobacterial viability, which was suppressed by treatment with wortmannin or the selective P2X7 antagonist, oxidized ATP (oATP).ConclusionWe provide the first evidence that ATP/P2X7-mediated killing of intracellular mycobacteria involves the induction of cell autophagy. The findings support the hypothesis that autophagy plays a key role in the control of mycobacterial infections.


Journal of Immunology | 2012

Availability of 25-Hydroxyvitamin D3 to APCs Controls the Balance between Regulatory and Inflammatory T Cell Responses

Louisa E. Jeffery; Alice M. Wood; Omar S. Qureshi; Tie Zheng Hou; David Gardner; Zoe Briggs; Satdip Kaur; Karim Raza; David M. Sansom

1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the active form of vitamin D, exerts potent effects on several tissues including cells of the immune system, where it affects T cell activation, differentiation and migration. The circulating, inactive form of vitamin D, 25(OH)D3, is generally used as an indication of vitamin D status. However, use of this precursor depends on its uptake by cells and subsequent conversion by the enzyme 25(OH)D3-1α-hydroxylase (CYP27B1) into active 1,25(OH)2D3. Using human T cells, we show in this study that addition of inactive 25(OH)D3 is sufficient to alter T cell responses only when dendritic cells (DCs) are present. Mechanistically, CYP27B1 is induced in DCs upon maturation with LPS or upon T cell contact, resulting in the generation and release of 1,25(OH)2D3, which subsequently affects T cell responses. In most tissues, vitamin D binding protein acts as a carrier to enhance the use of vitamin D. However, we show that vitamin D binding protein modulates T cell responses by restricting the availability of inactive 25(OH)D3 to DC. These data indicate that the level of free 25(OH)D3 available to DCs determines the inflammatory/regulatory balance of ensuing T cell responses.


Journal of Immunology | 2008

Acquisition of Suppressive Function by Activated Human CD4+CD25− T Cells Is Associated with the Expression of CTLA-4 Not FoxP3

Yong Zheng; Claire N. Manzotti; Fiona Burke; Laure Dussably; Omar S. Qureshi; Lucy S. K. Walker; David M. Sansom

The role of CTLA-4 in regulatory T cell (Treg) function is not well understood. We have examined the role of CTLA-4 and its relationship with the transcription factor FoxP3 using a model of Treg induction in human peripheral blood. Activation of human CD4+CD25− T cells resulted in the appearance of a de novo population of FoxP3-expressing cells within 48 h. These cells expressed high levels of CTLA-4 and cell sorting on expression of CTLA-4 strongly enriched for FoxP3+-expressing cells with suppressive function. Culture in IL-2 alone also generated cells with suppressive capacity that also correlated with the appearance of CTLA-4. To directly test the role of CTLA-4, we transfected resting human T cells with CTLA-4 and found that this method conferred suppression, similar to that of natural Tregs, even though these cells did not express FoxP3. Furthermore, transfection of FoxP3 did not induce CTLA-4 and these cells were not suppressive. By separating the expression of CTLA-4 and FoxP3, our data show that FoxP3 expression alone is insufficient to up-regulate CTLA-4; however, activation of CD4+CD25− T cells can induce both FoxP3 and CTLA-4 in a subpopulation of T cells that are capable of suppression. These data suggest that the acquisition of suppressive behavior by activated CD4+CD25− T cells requires the expression of CTLA-4, a feature that appears to be facilitated by, but is not dependent on, expression of FoxP3.


Journal of Cell Science | 2005

Non-canonical YXXGPhi endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors

Stephen J. Royle; Omar S. Qureshi; Laura K. Bobanovic; Philip R. Evans; David J. Owen; Ruth D. Murrell-Lagnado

During clathrin-mediated endocytosis, proteins on the cell surface are selected for inclusion in clathrin-coated vesicles by clathrin adaptors, mainly the adaptor complex AP2. The P2X4 subtype of ATP-gated ion channel has in its C-terminus two putative endocytic motifs: a canonical YXXΦ motif and a non-canonical YXXGΦ motif (YEQGL). We demonstrate that endocytosis of P2X4 receptors is mediated preferentially by the YXXGΦ motif because the YXXΦ motif is inaccessible to AP2 owing to the structure of the channel. The crystal structure of a complex between residues 160-435 of the μ2 subunit of AP2 and a P2X4 C-terminal peptide showed that the YEQGL motif binds to μ2 at the same site as YXXΦ motifs. Y and Φ residues are accommodated in the same hydrophobic pockets in μ2 with the extra residue between them being accommodated by changes in the peptides backbone configuration, when compared to YXXΦ motifs. These data demonstrate that the family of potential tyrosine-based endocytic signals must be expanded to include motifs with an additional glycine at Y+3 (YXXGΦ).

Collaboration


Dive into the Omar S. Qureshi's collaboration.

Top Co-Authors

Avatar

David M. Sansom

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satdip Kaur

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Tie Zheng Hou

University College London

View shared research outputs
Top Co-Authors

Avatar

Zoe Briggs

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Chun Jing Wang

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Karim Raza

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge