Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Deelen is active.

Publication


Featured researches published by Patrick Deelen.


Science | 2016

Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity.

Alexandra Zhernakova; Alexander Kurilshikov; Marc Jan Bonder; Ettje F. Tigchelaar; Melanie Schirmer; Tommi Vatanen; Zlatan Mujagic; Arnau Vich Vila; Gwen Falony; Sara Vieira-Silva; Jun Wang; Floris Imhann; Eelke Brandsma; Soesma A. Jankipersadsing; Marie Joossens; Maria Carmen Cenit; Patrick Deelen; Morris A. Swertz; Rinse K. Weersma; Edith J. M. Feskens; Mihai G. Netea; Dirk Gevers; Daisy Jonkers; Lude Franke; Yurii S. Aulchenko; Curtis Huttenhower; Jeroen Raes; Marten H. Hofker; Ramnik J. Xavier; Cisca Wijmenga

“Normal” for the gut microbiota For the benefit of future clinical studies, it is critical to establish what constitutes a “normal” gut microbiome, if it exists at all. Through fecal samples and questionnaires, Falony et al. and Zhernakova et al. targeted general populations in Belgium and the Netherlands, respectively. Gut microbiota composition correlated with a range of factors including diet, use of medication, red blood cell counts, fecal chromogranin A, and stool consistency. The data give some hints for possible biomarkers of normal gut communities. Science, this issue pp. 560 and 565 Two large-scale studies in Western Europe establish environment-diet-microbe-host interactions. Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary factors. These factors collectively explain 18.7% of the variation seen in the interindividual distance of microbial composition. We could associate 110 factors to 125 species and observed that fecal chromogranin A (CgA), a protein secreted by enteroendocrine cells, was exclusively associated with 61 microbial species whose abundance collectively accounted for 53% of microbial composition. Low CgA concentrations were seen in individuals with a more diverse microbiome. These results are an important step toward a better understanding of environment-diet-microbe-host interactions.


PLOS ONE | 2015

Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm

Janice L. Farlow; Hai Lin; Dongbing Lai; Daniel L. Koller; Elizabeth W. Pugh; Kurt N. Hetrick; Hua Ling; Rachel Kleinloog; Pieter van der Vlies; Patrick Deelen; Morris A. Swertz; Bon H. Verweij; Luca Regli; Gabriel J.E. Rinkel; Ynte M. Ruigrok; Kimberly F. Doheny; Yunlong Liu; Tatiana Foroud; Joseph P. Broderick; Daniel Woo; Brett Kissela; Dawn Kleindorfer; Alex Schneider; Mario Zuccarello; Andrew J. Ringer; Ranjan Deka; Robert D. Brown; John Huston; Irene Mesissner; David O. Wiebers

Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.


PLOS Genetics | 2012

Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression.

Jingyuan Fu; Marcel G. M. Wolfs; Patrick Deelen; Harm-Jan Westra; Rudolf S. N. Fehrmann; Gerard J. te Meerman; Wim A. Buurman; Sander S. Rensen; Harry J.M. Groen; Rinse K. Weersma; Leonard H. van den Berg; Jan H. Veldink; Roel A. Ophoff; Harold Snieder; David A. van Heel; Ritsert C. Jansen; Marten H. Hofker; Cisca Wijmenga; Lude Franke

It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human subjects and four primary non-blood tissues (liver, subcutaneous, and visceral adipose tissue and skeletal muscle) from 85 subjects. We characterized four different mechanisms for 2,072 probes that show tissue-dependent genetic regulation between blood and non-blood tissues: on average 33.2% only showed cis-regulation in non-blood tissues; 14.5% of the eQTL probes were regulated by different, independent SNPs depending on the tissue of investigation. 47.9% showed a different effect size although they were regulated by the same SNPs. Surprisingly, we observed that 4.4% were regulated by the same SNP but with opposite allelic direction. We show here that SNPs that are located in transcriptional regulatory elements are enriched for tissue-dependent regulation, including SNPs at 3′ and 5′ untranslated regions (Pu200a=u200a1.84×10−5 and 4.7×10−4, respectively) and SNPs that are synonymous-coding (Pu200a=u200a9.9×10−4). SNPs that are associated with complex traits more often exert a tissue-dependent effect on gene expression (Pu200a=u200a2.6×10−10). Our study yields new insights into the genetic basis of tissue-dependent expression and suggests that complex trait associated genetic variants have even more complex regulatory effects than previously anticipated.


Nature Genetics | 2016

The effect of host genetics on the gut microbiome

Marc Jan Bonder; Alexander Kurilshikov; Ettje F. Tigchelaar; Zlatan Mujagic; Floris Imhann; Arnau Vich Vila; Patrick Deelen; Tommi Vatanen; Melanie Schirmer; Sanne P. Smeekens; Daria V. Zhernakova; Soesma A. Jankipersadsing; Martin Jaeger; Marije Oosting; Maria Carmen Cenit; Ad Masclee; Morris A. Swertz; Yang Li; Vinod Kumar; Leo A. B. Joosten; Hermie J. M. Harmsen; Rinse K. Weersma; Lude Franke; Marten H. Hofker; Ramnik J. Xavier; Daisy Jonkers; Mihai G. Netea; Cisca Wijmenga; Jingyuan Fu; Alexandra Zhernakova

The gut microbiome is affected by multiple factors, including genetics. In this study, we assessed the influence of host genetics on microbial species, pathways and gene ontology categories, on the basis of metagenomic sequencing in 1,514 subjects. In a genome-wide analysis, we identified associations of 9 loci with microbial taxonomies and 33 loci with microbial pathways and gene ontology terms at P < 5 × 10−8. Additionally, in a targeted analysis of regions involved in complex diseases, innate and adaptive immunity, or food preferences, 32 loci were identified at the suggestive level of P < 5 × 10−6. Most of our reported associations are new, including genome-wide significance for the C-type lectin molecules CLEC4F–CD207 at 2p13.3 and CLEC4A–FAM90A1 at 12p13. We also identified association of a functional LCT SNP with the Bifidobacterium genus (P = 3.45 × 10−8) and provide evidence of a gene–diet interaction in the regulation of Bifidobacterium abundance. Our results demonstrate the importance of understanding host–microbe interactions to gain better insight into human health.


European Journal of Human Genetics | 2014

Improved imputation quality of low-frequency and rare variants in European samples using the 'Genome of The Netherlands'

Patrick Deelen; Androniki Menelaou; Elisabeth M. van Leeuwen; Alexandros Kanterakis; Freerk van Dijk; Carolina Medina-Gomez; Laurent C. Francioli; J ouke; Jan Hottenga; Lennart C. Karssen; Karol Estrada; Eskil Kreiner-Møller; Fernando Rivadeneira; Jessica van Setten; Javier Gutierrez-Achury; Lude Franke; David van Enckevort; Martijn Dijkstra; Heorhiy Byelas; Paul I. W. de Bakker; Cisca Wijmenga; Morris A. Swertz

Although genome-wide association studies (GWAS) have identified many common variants associated with complex traits, low-frequency and rare variants have not been interrogated in a comprehensive manner. Imputation from dense reference panels, such as the 1000 Genomes Project (1000G), enables testing of ungenotyped variants for association. Here we present the results of imputation using a large, new population-specific panel: the Genome of The Netherlands (GoNL). We benchmarked the performance of the 1000G and GoNL reference sets by comparing imputation genotypes with ‘true’ genotypes typed on ImmunoChip in three European populations (Dutch, British, and Italian). GoNL showed significant improvement in the imputation quality for rare variants (MAF 0.05–0.5%) compared with 1000G. In Dutch samples, the mean observed Pearson correlation, r2, increased from 0.61 to 0.71. We also saw improved imputation accuracy for other European populations (in the British samples, r2 improved from 0.58 to 0.65, and in the Italians from 0.43 to 0.47). A combined reference set comprising 1000G and GoNL improved the imputation of rare variants even further. The Italian samples benefitted the most from this combined reference (the mean r2 increased from 0.47 to 0.50). We conclude that the creation of a large population-specific reference is advantageous for imputing rare variants and that a combined reference panel across multiple populations yields the best imputation results.


Nature Genetics | 2016

Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps

Valentina Iotchkova; Jie Huang; John A. Morris; Deepti Jain; Caterina Barbieri; Klaudia Walter; Josine L. Min; Lu Chen; William Astle; Massimilian Cocca; Patrick Deelen; Heather Elding; Aliki-Eleni Farmaki; Christopher S. Franklin; Tom R. Gaunt; Albert Hofman; Tao Jiang; Marcus E. Kleber; Genevieve Lachance; Jian'an Luan; Giovanni Malerba; Angela Matchan; Daniel Mead; Yasin Memari; Ioanna Ntalla; Kalliope Panoutsopoulou; Raha Pazoki; John Perry; Fernando Rivadeneira; Maria Sabater-Lleal

Large-scale whole-genome sequence data sets offer novel opportunities to identify genetic variation underlying human traits. Here we apply genotype imputation based on whole-genome sequence data from the UK10K and 1000 Genomes Project into 35,981 study participants of European ancestry, followed by association analysis with 20 quantitative cardiometabolic and hematological traits. We describe 17 new associations, including 6 rare (minor allele frequency (MAF) < 1%) or low-frequency (1% < MAF < 5%) variants with platelet count (PLT), red blood cell indices (MCH and MCV) and HDL cholesterol. Applying fine-mapping analysis to 233 known and new loci associated with the 20 traits, we resolve the associations of 59 loci to credible sets of 20 or fewer variants and describe trait enrichments within regions of predicted regulatory function. These findings improve understanding of the allelic architecture of risk factors for cardiometabolic and hematological diseases and provide additional functional insights with the identification of potentially novel biological targets.


Journal of Autoimmunity | 2016

Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs

Isis Ricaño-Ponce; Daria V. Zhernakova; Patrick Deelen; Oscar Junhong Luo; Xingwang Li; Aaron Isaacs; Juha Karjalainen; Jennifer Di Tommaso; Zuzanna Borek; Maria Zorro; Javier Gutierrez-Achury; André G. Uitterlinden; Albert Hofman; Joyce B. J. van Meurs; Mihai G. Netea; Iris Jonkers; Sebo Withoff; Cornelia M. van Duijn; Yang Li; Yijun Ruan; Lude Franke; Cisca Wijmenga; Vinod Kumar

Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases.


Nature Communications | 2015

Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels

Elisabeth M. van Leeuwen; Lennart C. Karssen; Joris Deelen; Aaron Isaacs; Carolina Medina-Gomez; Hamdi Mbarek; Alexandros Kanterakis; Stella Trompet; Iris Postmus; Niek Verweij; David van Enckevort; Jennifer E. Huffman; Charles C. White; Mary F. Feitosa; Traci M. Bartz; Ani Manichaikul; Peter K. Joshi; Gina M. Peloso; Patrick Deelen; Freerk van Dijk; Gonneke Willemsen; Eco J. de Geus; Yuri Milaneschi; Laurent C. Francioli; Androniki Menelaou; Sara L. Pulit; Fernando Rivadeneira; Albert Hofman; Ben A. Oostra; Oscar H. Franco

Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of the Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10−4), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR.


bioRxiv | 2016

A high-quality reference panel reveals the complexity and distribution of structural genome changes in a human population

Jayne Y. Hehir-Kwa; Tobias Marschall; Wigard P. Kloosterman; Laurent C. Francioli; Jasmijn A. Baaijens; Louis J. Dijkstra; Abdel Abdellaoui; Vyacheslav Koval; Djie Tjwan Thung; René Wardenaar; Bradley P. Coe; Patrick Deelen; Joep de Ligt; Eric-Wubbo Lameijer; Freerk van Dijk; Fereydoun Hormozdiari; Evan E. Eichler; Paul I. W. de Bakker; Morris A. Swertz; Cisca Wijmenga; Gert-Jan B. van Ommen; Eline Slagboom; Dorret I. Boomsma; Alexander Schoenhuth; Kai Ye; Victor Guryev

Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals. Our findings are essential for genome-wide association studies.


IWSG | 2013

Scaling Bio-Analyses from Computational Clusters to Grids.

Heorhiy Byelas; Martijn Dijkstra; Pieter B. T. Neerincx; Freerk van Dijk; Alexandros Kanterakis; Patrick Deelen; Morris A. Swertz

Collaboration


Dive into the Patrick Deelen's collaboration.

Top Co-Authors

Avatar

Cisca Wijmenga

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Morris A. Swertz

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Lude Franke

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Freerk van Dijk

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Albert Hofman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Daria V. Zhernakova

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Fernando Rivadeneira

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jingyuan Fu

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marten H. Hofker

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge