Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morris A. Swertz is active.

Publication


Featured researches published by Morris A. Swertz.


Scientific Data | 2016

The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson; Michel Dumontier; IJsbrand Jan Aalbersberg; Gabrielle Appleton; Myles Axton; Arie Baak; Niklas Blomberg; Jan Willem Boiten; Luiz Olavo Bonino da Silva Santos; Philip E. Bourne; Jildau Bouwman; Anthony J. Brookes; Timothy W.I. Clark; Mercè Crosas; Ingrid Dillo; Olivier Dumon; Scott C Edmunds; Chris T. Evelo; Richard Finkers; Alejandra Gonzalez-Beltran; Alasdair J. G. Gray; Paul T. Groth; Carole A. Goble; Jeffrey S. Grethe; Jaap Heringa; Peter A. C. 't Hoen; Rob W. W. Hooft; Tobias Kuhn; Ruben Kok; Joost N. Kok

There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.


Nature Genetics | 2014

Whole-genome sequence variation, population structure and demographic history of the Dutch population

Laurent C. Francioli; Androniki Menelaou; Sara L. Pulit; Freerk van Dijk; Pier Francesco Palamara; Clara C. Elbers; Pieter B. T. Neerincx; Kai Ye; Victor Guryev; Wigard P. Kloosterman; Patrick Deelen; Abdel Abdellaoui; Elisabeth M. van Leeuwen; Mannis van Oven; Martijn Vermaat; Mingkun Li; Jeroen F. J. Laros; Lennart C. Karssen; Alexandros Kanterakis; Najaf Amin; Jouke-Jan Hottenga; Eric-Wubbo Lameijer; Mathijs Kattenberg; Martijn Dijkstra; Heorhiy Byelas; Jessica van Setten; Barbera D. C. van Schaik; Jan Bot; Isaac J. Nijman; Ivo Renkens

Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch parent-offspring families and constructed a haplotype map of 20.4 million single-nucleotide variants and 1.2 million insertions and deletions. The intermediate coverage (∼13×) and trio design enabled extensive characterization of structural variation, including midsize events (30–500 bp) previously poorly catalogued and de novo mutations. We demonstrate that the quality of the haplotypes boosts imputation accuracy in independent samples, especially for lower frequency alleles. Population genetic analyses demonstrate fine-scale structure across the country and support multiple ancient migrations, consistent with historical changes in sea level and flooding. The GoNL Project illustrates how single-population whole-genome sequencing can provide detailed characterization of genetic variation and may guide the design of future population studies.


Science | 2016

Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity.

Alexandra Zhernakova; Alexander Kurilshikov; Marc Jan Bonder; Ettje F. Tigchelaar; Melanie Schirmer; Tommi Vatanen; Zlatan Mujagic; Arnau Vich Vila; Gwen Falony; Sara Vieira-Silva; Jun Wang; Floris Imhann; Eelke Brandsma; Soesma A. Jankipersadsing; Marie Joossens; Maria Carmen Cenit; Patrick Deelen; Morris A. Swertz; Rinse K. Weersma; Edith J. M. Feskens; Mihai G. Netea; Dirk Gevers; Daisy Jonkers; Lude Franke; Yurii S. Aulchenko; Curtis Huttenhower; Jeroen Raes; Marten H. Hofker; Ramnik J. Xavier; Cisca Wijmenga

“Normal” for the gut microbiota For the benefit of future clinical studies, it is critical to establish what constitutes a “normal” gut microbiome, if it exists at all. Through fecal samples and questionnaires, Falony et al. and Zhernakova et al. targeted general populations in Belgium and the Netherlands, respectively. Gut microbiota composition correlated with a range of factors including diet, use of medication, red blood cell counts, fecal chromogranin A, and stool consistency. The data give some hints for possible biomarkers of normal gut communities. Science, this issue pp. 560 and 565 Two large-scale studies in Western Europe establish environment-diet-microbe-host interactions. Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary factors. These factors collectively explain 18.7% of the variation seen in the interindividual distance of microbial composition. We could associate 110 factors to 125 species and observed that fecal chromogranin A (CgA), a protein secreted by enteroendocrine cells, was exclusively associated with 61 microbial species whose abundance collectively accounted for 53% of microbial composition. Low CgA concentrations were seen in individuals with a more diverse microbiome. These results are an important step toward a better understanding of environment-diet-microbe-host interactions.


PLOS ONE | 2015

Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm

Janice L. Farlow; Hai Lin; Dongbing Lai; Daniel L. Koller; Elizabeth W. Pugh; Kurt N. Hetrick; Hua Ling; Rachel Kleinloog; Pieter van der Vlies; Patrick Deelen; Morris A. Swertz; Bon H. Verweij; Luca Regli; Gabriel J.E. Rinkel; Ynte M. Ruigrok; Kimberly F. Doheny; Yunlong Liu; Tatiana Foroud; Joseph P. Broderick; Daniel Woo; Brett Kissela; Dawn Kleindorfer; Alex Schneider; Mario Zuccarello; Andrew J. Ringer; Ranjan Deka; Robert D. Brown; John Huston; Irene Mesissner; David O. Wiebers

Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.


Analytical Chemistry | 2011

PeakML/mzMatch: A File Format, Java Library, R Library, and Tool-Chain for Mass Spectrometry Data Analysis

Richard A. Scheltema; Andris Jankevics; Ritsert C. Jansen; Morris A. Swertz; Rainer Breitling

The recent proliferation of high-resolution mass spectrometers has generated a wealth of new data analysis methods. However, flexible integration of these methods into configurations best suited to the research question is hampered by heterogeneous file formats and monolithic software development. The mzXML, mzData, and mzML file formats have enabled uniform access to unprocessed raw data. In this paper we present our efforts to produce an equally simple and powerful format, PeakML, to uniformly exchange processed intermediary and result data. To demonstrate the versatility of PeakML, we have developed an open source Java toolkit for processing, filtering, and annotating mass spectra in a customizable pipeline (mzMatch), as well as a user-friendly data visualization environment (PeakML Viewer). The PeakML format in particular enables the flexible exchange of processed data between software created by different groups or companies, as we illustrate by providing a PeakML-based integration of the widely used XCMS package with mzMatch data processing tools. As an added advantage, downstream analysis can benefit from direct access to the full mass trace information underlying summarized mass spectrometry results, providing the user with the means to rapidly verify results. The PeakML/mzMatch software is freely available at http://mzmatch.sourceforge.net, with documentation, tutorials, and a community forum.


International Journal of Epidemiology | 2015

Cohort Profile: LifeLines, a three-generation cohort study and biobank

Salome Scholtens; Nynke Smidt; Morris A. Swertz; Stephan J. L. Bakker; Aafje Dotinga; Judith M. Vonk; Freerk van Dijk; Sander K. R. van Zon; Cisca Wijmenga; Bruce H. R. Wolffenbuttel; Ronald P. Stolk

The LifeLines Cohort Study is a large population-based cohort study and biobank that was established as a resource for research on complex interactions between environmental, phenotypic and genomic factors in the development of chronic diseases and healthy ageing. Between 2006 and 2013, inhabitants of the northern part of The Netherlands and their families were invited to participate, thereby contributing to a three-generation design. Participants visited one of the LifeLines research sites for a physical examination, including lung function, ECG and cognition tests, and completed extensive questionnaires. Baseline data were collected for 167 729 participants, aged from 6 months to 93 years. Follow-up visits are scheduled every 5 years, and in between participants receive follow-up questionnaires. Linkage is being established with medical registries and environmental data. LifeLines contains information on biochemistry, medical history, psychosocial characteristics, lifestyle and more. Genomic data are available including genome-wide genetic data of 15 638 participants. Fasting blood and 24-h urine samples are processed on the day of collection and stored at -80 °C in a fully automated storage facility. The aim of LifeLines is to be a resource for the national and international scientific community. Requests for data and biomaterials can be submitted to the LifeLines Research Office [[email protected]].


Nature Genetics | 2015

Genome-wide patterns and properties of de novo mutations in humans

Laurent C. Francioli; Paz Polak; Amnon Koren; Androniki Menelaou; Sung Chun; Ivo Renkens; Cornelia M. van Duijn; Morris A. Swertz; Cisca Wijmenga; Gert-Jan B. van Ommen; P. Eline Slagboom; Dorret I. Boomsma; Kai Ye; Victor Guryev; Peter F. Arndt; Wigard P. Kloosterman; Paul I. W. de Bakker; Shamil R. Sunyaev

Mutations create variation in the population, fuel evolution and cause genetic diseases. Current knowledge about de novo mutations is incomplete and mostly indirect. Here we analyze 11,020 de novo mutations from the whole genomes of 250 families. We show that de novo mutations in the offspring of older fathers are not only more numerous but also occur more frequently in early-replicating, genic regions. Functional regions exhibit higher mutation rates due to CpG dinucleotides and show signatures of transcription-coupled repair, whereas mutation clusters with a unique signature point to a new mutational mechanism. Mutation and recombination rates independently associate with nucleotide diversity, and regional variation in human-chimpanzee divergence is only partly explained by heterogeneity in mutation rate. Finally, we provide a genome-wide mutation rate map for medical and population genetics applications. Our results provide new insights and refine long-standing hypotheses about human mutagenesis.


Human Mutation | 2012

Mutation update on the CHD7 gene involved in CHARGE syndrome.

Nicole Janssen; Jorieke E. H. Bergman; Morris A. Swertz; Lisbeth Tranebjærg; Marianne Lodahl; Jeroen Schoots; Robert M.W. Hofstra; Conny M. A. van Ravenswaaij-Arts; Lies H. Hoefsloot

CHD7 is a member of the chromodomain helicase DNA‐binding (CHD) protein family that plays a role in transcription regulation by chromatin remodeling. Loss‐of‐function mutations in CHD7 are known to cause CHARGE syndrome, an autosomal‐dominant malformation syndrome in which several organ systems, for example, the central nervous system, eye, ear, nose, and mediastinal organs, are variably involved. In this article, we review all the currently described CHD7 variants, including 183 new pathogenic mutations found by our laboratories. In total, we compiled 528 different pathogenic CHD7 alterations from 508 previously published patients with CHARGE syndrome and 294 unpublished patients analyzed by our laboratories. The mutations are equally distributed along the coding region of CHD7 and most are nonsense or frameshift mutations. Most mutations are unique, but we identified 94 recurrent mutations, predominantly arginine to stop codon mutations. We built a locus‐specific database listing all the variants that is easily accessible at www.CHD7.org. In addition, we summarize the latest data on CHD7 expression studies, animal models, and functional studies, and we discuss the latest clinical insights into CHARGE syndrome. Hum Mutat 33:1149–1160, 2012.


European Journal of Human Genetics | 2014

The Genome of the Netherlands: design, and project goals

Dorret I. Boomsma; Cisca Wijmenga; Eline Slagboom; Morris A. Swertz; Lennart C. Karssen; Abdel Abdellaoui; Kai Ye; Victor Guryev; Martijn Vermaat; Freerk van Dijk; Laurent C. Francioli; Jouke-Jan Hottenga; Jeroen F. J. Laros; Qibin Li; Yingrui Li; Hongzhi Cao; Ruoyan Chen; Yuanping Du; Ning Li; Sujie Cao; Jessica van Setten; Androniki Menelaou; Sara L. Pulit; Jayne Y. Hehir-Kwa; Marian Beekman; Clara C. Elbers; Heorhiy Byelas; Anton J. M. de Craen; Patrick Deelen; Martijn Dijkstra

Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent–offspring trios include adult individuals ranging in age from 19 to 87 years (mean=53 years; SD=16 years) from birth cohorts 1910–1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14–15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project.


Nature Genetics | 2016

The effect of host genetics on the gut microbiome

Marc Jan Bonder; Alexander Kurilshikov; Ettje F. Tigchelaar; Zlatan Mujagic; Floris Imhann; Arnau Vich Vila; Patrick Deelen; Tommi Vatanen; Melanie Schirmer; Sanne P. Smeekens; Daria V. Zhernakova; Soesma A. Jankipersadsing; Martin Jaeger; Marije Oosting; Maria Carmen Cenit; Ad Masclee; Morris A. Swertz; Yang Li; Vinod Kumar; Leo A. B. Joosten; Hermie J. M. Harmsen; Rinse K. Weersma; Lude Franke; Marten H. Hofker; Ramnik J. Xavier; Daisy Jonkers; Mihai G. Netea; Cisca Wijmenga; Jingyuan Fu; Alexandra Zhernakova

The gut microbiome is affected by multiple factors, including genetics. In this study, we assessed the influence of host genetics on microbial species, pathways and gene ontology categories, on the basis of metagenomic sequencing in 1,514 subjects. In a genome-wide analysis, we identified associations of 9 loci with microbial taxonomies and 33 loci with microbial pathways and gene ontology terms at P < 5 × 10−8. Additionally, in a targeted analysis of regions involved in complex diseases, innate and adaptive immunity, or food preferences, 32 loci were identified at the suggestive level of P < 5 × 10−6. Most of our reported associations are new, including genome-wide significance for the C-type lectin molecules CLEC4F–CD207 at 2p13.3 and CLEC4A–FAM90A1 at 12p13. We also identified association of a functional LCT SNP with the Bifidobacterium genus (P = 3.45 × 10−8) and provide evidence of a gene–diet interaction in the regulation of Bifidobacterium abundance. Our results demonstrate the importance of understanding host–microbe interactions to gain better insight into human health.

Collaboration


Dive into the Morris A. Swertz's collaboration.

Top Co-Authors

Avatar

Cisca Wijmenga

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Joeri van der Velde

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Lude Franke

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Li

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Freerk van Dijk

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Richard J. Sinke

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Alexandra Zhernakova

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Ettje F. Tigchelaar

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge