Ludmila Chistoserdova
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ludmila Chistoserdova.
Journal of Bacteriology | 2003
Ludmila Chistoserdova; Sung-Wei Chen; Alla Lapidus; Mary E. Lidstrom
Methylotrophy is defined as the ability to “grow at the expense of reduced carbon compounds containing one or more carbon atoms but containing no carbon-carbon bonds” (3). It is an intriguing example of microbial metabolic agility, with the use of a class of chemicals disregarded by the majority of organisms. Even though the ability to grow methylotrophically was first discovered in the early 1900s (cited in reference 3), it was not until the 1960s to 1970s that an understanding of the biochemical nature of this capability started to emerge. Fascination with methylotrophy in those years was fueled by the commercial interest in single-cell protein production, and as a result, the specific details of the biochemistry of methylotrophy began to be revealed. Enzymes for the primary oxidation of C1 substrates such as methanol dehydrogenase and methylamine dehydrogenase were characterized, and distinct modes of C1 assimilation, such as the ribulose monophosphate cycle and the serine cycle were discovered. The biochemical processes involved in methylotrophy that were known by 1982 are described in detail in the now classic book Biochemistry of Methylotrophs by Christopher Anthony (3). In the 20 years following the publication of Biochemistry of Methylotrophs, a few additional methylotrophy biochemical pathways have been discovered, such as the pathway for C1 transfer linked to methanopterin and methanofuran, which solved the long-standing mystery of formaldehyde oxidation in many methylotrophs (15, 53), and novel pathways for primary C1 oxidation, such as the pathways for degradation of chlorinated methanes and methanesulfonic acid (21, 50).
Annual Review of Microbiology | 2009
Ludmila Chistoserdova; Marina G. Kalyuzhnaya; Mary E. Lidstrom
In the past few years, the field of methylotrophy has undergone a significant transformation in terms of discovery of novel types of methylotrophs, novel modes of methylotrophy, and novel metabolic pathways. This time has also been marked by the resolution of long-standing questions regarding methylotrophy and the challenge of long-standing dogmas. This chapter is not intended to provide a comprehensive review of metabolism of methylotrophic bacteria. Instead we focus on significant recent discoveries that are both refining and transforming the current understanding of methylotrophy as a metabolic phenomenon. We also review new directions in methylotroph ecology that improve our understanding of the role of methylotrophy in global biogeochemical processes, along with an outlook for the future challenges in the field.
Nature Biotechnology | 2008
Marina G. Kalyuzhnaya; Alla Lapidus; Natalia Ivanova; Alex Copeland; Alice C. McHardy; Ernest Szeto; Asaf Salamov; Igor V. Grigoriev; Dominic Suciu; Samuel R Levine; Victor Markowitz; Isidore Rigoutsos; Susannah G. Tringe; David Bruce; Paul M. Richardson; Mary E. Lidstrom; Ludmila Chistoserdova
Most microbes in the biosphere remain unculturable. Whole genome shotgun (WGS) sequencing of environmental DNA (metagenomics) can be used to study the genetic and metabolic properties of natural microbial communities. However, in communities of high complexity, metagenomics fails to link specific microbes to specific ecological functions. To overcome this limitation, we developed a method to target microbial subpopulations by labeling DNA through stable isotope probing (SIP), followed by WGS sequencing. Metagenome analysis of microbes from Lake Washington in Seattle that oxidize single-carbon (C1) compounds shows specific sequence enrichments in response to different C1 substrates, revealing the ecological roles of individual phylotypes. We also demonstrate the utility of our approach by extracting a nearly complete genome of a novel methylotroph, Methylotenera mobilis, reconstructing its metabolism and conducting genome-wide analyses. This high-resolution, targeted metagenomics approach may be applicable to a wide variety of ecosystems.
Environmental Microbiology | 2011
Ludmila Chistoserdova
Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon-carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well-defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy.
PLOS ONE | 2009
Stéphane Vuilleumier; Ludmila Chistoserdova; Ming-Chun Lee; Françoise Bringel; Aurélie Lajus; Yang Zhou; Benjamin Gourion; Valérie Barbe; Jean Chang; Stéphane Cruveiller; Carole Dossat; Will Gillett; Christelle Gruffaz; Eric Haugen; Edith Hourcade; Ruth Levy; Sophie Mangenot; Emilie Muller; Thierry Nadalig; Marco Pagni; Christian Penny; Rémi Peyraud; David G. Robinson; David Roche; Zoé Rouy; Channakhone Saenampechek; Grégory Salvignol; David Vallenet; Zaining Wu; Christopher J. Marx
Background Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. Methodology/Principal Findings The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name “island integration determinant” (iid). Conclusion/Significance These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles.
Applied and Environmental Microbiology | 2005
Olivier Nercessian; Emma Noyes; Marina G. Kalyuzhnaya; Mary E. Lidstrom; Ludmila Chistoserdova
ABSTRACT Active members of the bacterial community in the sediment of Lake Washington, with special emphasis on C1 utilizers, were identified by employing two complementary culture-independent approaches: reverse transcription of environmental mRNA and 16S rRNA combined with PCR (RT-PCR) and stable-isotope probing (SIP) of DNA with the 13C-labeled C1 substrates methanol, methylamine, formaldehyde, and formate. Analysis of RT-PCR-amplified fragments of 16S rRNA-encoding genes revealed that gammaproteobacterial methanotrophs belonging to Methylobacter and Methylomonas dominate the active methylotroph population, while only one other known methylotrophic lineage, Methylophilaceae, was detected via this approach. Analysis of RT-PCR-amplified functional genes, pmoA and fae, allowed detection of alphaproteobacterial (Methylosinus) and gammaproteobacterial (Methylobacter, Methylomonas, and Methylomicrobium) methanotrophs, methylotrophs of the genus Methylobacterium, and yet-unidentified proteobacteria. SIP experiments allowed detection of a broad variety of groups actively metabolizing C1 compounds. Comparisons between 16S rRNA gene pools amplified from [13C]DNA and from [12C]DNA revealed that the proportion of Methylophilus-related sequences increased in the presence of [13C]methanol, [13C]methylamine, and [13C]formaldehyde; Novosphingobium-related sequences were enriched in the presence of [13C]methanol; Gemmatimonadaceae-related sequences were enriched in the presence of [13C]formaldehyde and [13C]formate; and Xanthomonadaceae-related sequences were enriched in the presence of [13C]formate. Analysis of fae genes amplified from [13C]DNAs isolated from different microcosms revealed specific shifts in populations in response to a specific C1 compound: Methylosinus sequences dominated the [13C]methanol microcosm pool, and beta- and gammaproteobacterial sequences dominated the [13C]methylamine microcosm pool. The [13C]formaldehyde microcosm was dominated by betaproteobacterial sequences and by sequences of a nonaffiliated group, while the [13C]formate microcosm was dominated by alpha- and betaproteobacterial sequences. Overall, these data point toward the presence of a diverse population of active methylotrophs in Lake Washington sediments and toward the existence of yet-uncultivated organisms.
Journal of Bacteriology | 2002
Mary E. Lidstrom; Ludmila Chistoserdova
Bacteria of the genus Methylobacterium are well-studied examples of facultative methylotrophs. These bacteria are classified as α-proteobacteria and are capable of growth on methanol and methylamine as well as on a variety of C2, C3, and C4 compounds (8). Methylobacterium strains are commonly found in soils, as well as on the surfaces of leaves of a wide variety of plants (1). Because of their distinctive pink pigmentation, they are sometimes referred to as PPFMs (pink-pigmented facultative methylotrophs). Evidence exists that these bacteria utilize methanol emitted by the stomata of plants (9), but the details of their relationship to plants has been unclear. Are Methylobacterium strains commensal bacteria, or do they communicate with plants in a more intimate relationship? A number of reports suggest that Methylobacterium strains are more than passive passengers on plant leaves. For instance, they have been shown in some cases to stimulate seed germination and plant development, possibly by production of phytohormones (2, 3, 4), and it has been reported that one strain produces the cytokinin zeatin (5) while others have been reported to produce indole acetic acid (6). In addition, Methylobacterium strains have been suggested to contribute to the flavor of strawberries (12) and have been localized as endosymbionts within cells of the buds of Scotch pine (Pinus sylvestris) (10). One nonpigmented Methylobacterium strain has been shown to form a root-nodulating nitrogen-fixing symbiosis with a legume (11). A partial genome sequence of Methylobacterium extorquens AM1 is available (http://pedant.mips.biochem.mpg.de/), which reveals a number of open reading frames with significant identity to genes involved in plant association in rhizobia and Agrobacterium (M. Lidstrom, unpublished results). Therefore, at this point numerous indications exist that these PPFMs interact with plants, but the biochemical and genetic details of those interactions have remained elusive. In this issue, Koenig et al. (7) present a set of studies that represents an important step in understanding the molecular basis of Methylobacterium-plant interactions. They show that four different Methylobacterium strains representing leaf isolates and a type M. extorquens strain all produce the cytokinin trans-zeatin at low levels in pure culture and excrete it into the culture medium. Biochemical and genetic evidence is presented suggesting that the trans-zeatin is not synthesized de novo but instead is derived from tRNA. This result is surprising, since so far the tRNA-derived zeatin from bacteria and plants has been restricted to the cis isomer. Is the low-level production of trans-zeatin observed in these strains sufficient to have an effect on plants? Surprisingly, the Methylobacterium-specific stimulation of seed germination that has been described in the past (3, 4) was unaffected in a mutant that is incapable of producing trans-zeatin. Thus, the answer to this question is still outstanding, as is the source of the stimulation effect itself. However, the results presented by Koenig et al. provide mechanistic evidence for cytokinin production by Methylobacterium strains, leading the way for future studies of the Methylobacterium-plant relationship. In addition, this evidence that a commensal bacterium produces a phytohormone via a previously unknown route provides new insights into the role of commensal plant bacteria in general.
Applied and Environmental Microbiology | 2006
Marina G. Kalyuzhnaya; Rebecca Zabinsky; Sarah Bowerman; David R. Baker; Mary E. Lidstrom; Ludmila Chistoserdova
ABSTRACT A fluorescence in situ hybridization-flow cytometry (FISH/FC)-based method was optimized using artificial mixtures of pure cultures of methanotrophic bacteria. Traditional oligonucleotide probes targeting 16S rRNAs of type I (MG84/705 probe) and type II (MA450 probe) methanotrophs were labeled with fluorescein or Alexa fluor and used for FISH, followed by fluorescence-activated FC analysis and cell sorting (FACS). The method resulted in efficient separation of target cells (type I or type II methanotrophs) from the artificial mixtures. The method was then applied for detection and enrichment of type I and type II methanotroph populations from a natural sample, Lake Washington sediment. Cells were extracted from the sediment, fixed, and subjected to FISH/FC/FACS. The resulting subpopulations were analyzed by reverse transcriptase PCR surveys of 16S rRNA, pmoA (encoding a subunit of particulate methane monooxygenase), and fae (encoding formaldehyde-activating enzyme) genes. The functional gene analysis indicated specific separation of the type I and type II methanotroph populations. 16S rRNA gene analysis revealed that type I methanotrophs comprised 59% of the subpopulation separated using the type I-specific probe and that type II methanotrophs comprised 47.5% of the subpopulation separated using the type II-specific probe. Our data indicate that the FISH/FC/FACS protocol described can provide significant enrichment of microbial populations of interest from complex natural communities and that these can be used for genetic tests. We further tested the possibility of direct whole-genome amplification (WGA) from limited numbers of sorted cells, using artificial mixtures of microbes whose genome sequences are known. We demonstrated that efficient WGA can be achieved using 104 or more cells separated by 16S rRNA-specific FISH/FC/FACS, while fewer cells resulted in less specific WGA.
Journal of Bacteriology | 2002
Natalia Korotkova; Ludmila Chistoserdova; Vladimir Kuksa; Mary E. Lidstrom
Most serine cycle methylotrophic bacteria lack isocitrate lyase and convert acetyl coenzyme A (acetyl-CoA) to glyoxylate via a novel pathway thought to involve butyryl-CoA and propionyl-CoA as intermediates. In this study we have used a genome analysis approach followed by mutation to test a number of genes for involvement in this novel pathway. We show that methylmalonyl-CoA mutase, an R-specific crotonase, isobutyryl-CoA dehydrogenase, and a GTPase are involved in glyoxylate regeneration. We also monitored the fate of (14)C-labeled carbon originating from acetate, butyrate, or bicarbonate in mutants defective in glyoxylate regeneration and identified new potential intermediates in the pathway: ethylmalonyl-CoA, methylsuccinyl-CoA, isobutyryl-CoA, methacrylyl-CoA, and beta-hydroxyisobutyryl-CoA. A new scheme for the pathway is proposed based on these data.
Journal of Bacteriology | 2007
Ludmila Chistoserdova; Alla Lapidus; Cliff Han; Lynne Goodwin; Liz Saunders; Tom Brettin; Roxanne Tapia; Paul Gilna; Susan Lucas; Paul M. Richardson; Mary E. Lidstrom
Along with methane, methanol and methylated amines represent important biogenic atmospheric constituents; thus, not only methanotrophs but also nonmethanotrophic methylotrophs play a significant role in global carbon cycling. The complete genome of a model obligate methanol and methylamine utilizer, Methylobacillus flagellatus (strain KT) was sequenced. The genome is represented by a single circular chromosome of approximately 3 Mbp, potentially encoding a total of 2,766 proteins. Based on genome analysis as well as the results from previous genetic and mutational analyses, methylotrophy is enabled by methanol and methylamine dehydrogenases and their specific electron transport chain components, the tetrahydromethanopterin-linked formaldehyde oxidation pathway and the assimilatory and dissimilatory ribulose monophosphate cycles, and by a formate dehydrogenase. Some of the methylotrophy genes are present in more than one (identical or nonidentical) copy. The obligate dependence on single-carbon compounds appears to be due to the incomplete tricarboxylic acid cycle, as no genes potentially encoding alpha-ketoglutarate, malate, or succinate dehydrogenases are identifiable. The genome of M. flagellatus was compared in terms of methylotrophy functions to the previously sequenced genomes of three methylotrophs, Methylobacterium extorquens (an alphaproteobacterium, 7 Mbp), Methylibium petroleiphilum (a betaproteobacterium, 4 Mbp), and Methylococcus capsulatus (a gammaproteobacterium, 3.3 Mbp). Strikingly, metabolically and/or phylogenetically, the methylotrophy functions in M. flagellatus were more similar to those in M. capsulatus and M. extorquens than to the ones in the more closely related M. petroleiphilum species, providing the first genomic evidence for the polyphyletic origin of methylotrophy in Betaproteobacteria.