Sílvio Roberto Branco Santos
University of Minho
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sílvio Roberto Branco Santos.
PLOS ONE | 2011
Carina Almeida; N. F. Azevedo; Sílvio Roberto Branco Santos; C. W. Keevil; M. J. Vieira
Background Our current understanding of biofilms indicates that these structures are typically composed of many different microbial species. However, the lack of reliable techniques for the discrimination of each population has meant that studies focusing on multi-species biofilms are scarce and typically generate qualitative rather than quantitative data. Methodology/Principal Findings We employ peptide nucleic acid fluorescence in situ hybridization (PNA FISH) methods to quantify and visualize mixed biofilm populations. As a case study, we present the characterization of Salmonella enterica/Listeria monocytogenes/Escherichia coli single, dual and tri-species biofilms in seven different support materials. Ex-situ, we were able to monitor quantitatively the populations of ∼56 mixed species biofilms up to 48 h, regardless of the support material. In situ, a correct quantification remained more elusive, but a qualitative understanding of biofilm structure and composition is clearly possible by confocal laser scanning microscopy (CLSM) at least up to 192 h. Combining the data obtained from PNA FISH/CLSM with data from other established techniques and from calculated microbial parameters, we were able to develop a model for this tri-species biofilm. The higher growth rate and exopolymer production ability of E. coli probably led this microorganism to outcompete the other two [average cell numbers (cells/cm2) for 48 h biofilm: E. coli 2,1×108 (±2,4×107); L. monocytogenes 6,8×107 (±9,4×106); and S. enterica 1,4×106 (±4,1×105)]. This overgrowth was confirmed by CSLM, with two well-defined layers being easily identified: the top one with E. coli, and the bottom one with mixed regions of L. monocytogenes and S. enterica. Significance While PNA FISH has been described previously for the qualitative study of biofilm populations, the present investigation demonstrates that it can also be used for the accurate quantification and spatial distribution of species in polymicrobial communities. Thus, it facilitates the understanding of interspecies interactions and how these are affected by changes in the surrounding environment.
Journal of Virology | 2013
Hugo Alexandre Mendes Oliveira; Luís D. R. Melo; Sílvio Roberto Branco Santos; Franklin L. Nobrega; E. C. Ferreira; Nuno Cerca; Joana Azeredo; Leon Kluskens
ABSTRACT Phages are recognized as the most abundant and diverse entities on the planet. Their diversity is determined predominantly by their dynamic adaptation capacities when confronted with different selective pressures in an endless cycle of coevolution with a widespread group of bacterial hosts. At the end of the infection cycle, progeny virions are confronted with a rigid cell wall that hinders their release into the environment and the opportunity to start a new infection cycle. Consequently, phages encode hydrolytic enzymes, called endolysins, to digest the peptidoglycan. In this work, we bring to light all phage endolysins found in completely sequenced double-stranded nucleic acid phage genomes and uncover clues that explain the phage-endolysin-host ecology that led phages to recruit unique and specialized endolysins.
Journal of Virology | 2011
Sílvio Roberto Branco Santos; Andrew M. Kropinski; Pieter-Jan Ceyssens; Hans-W. Ackermann; Andre Villegas; Rob Lavigne; V. N. Krylov; Carla A. O. C. M. Carvalho; E. C. Ferreira; Joana Azeredo
ABSTRACT (Bacterio)phage PVP-SE1, isolated from a German wastewater plant, presents a high potential value as a biocontrol agent and as a diagnostic tool, even compared to the well-studied typing phage Felix 01, due to its broad lytic spectrum against different Salmonella strains. Sequence analysis of its genome (145,964 bp) shows it to be terminally redundant and circularly permuted. Its G+C content, 45.6 mol%, is lower than that of its hosts (50 to 54 mol%). We found a total of 244 open reading frames (ORFs), representing 91.6% of the coding capacity of the genome. Approximately 46% of encoded proteins are unique to this phage, and 22.1% of the proteins could be functionally assigned. This myovirus encodes a large number of tRNAs (n=24), reflecting its lytic capacity and evolution through different hosts. Tandem mass spectrometric analysis using electron spray ionization revealed 25 structural proteins as part of the mature phage particle. The genome sequence was found to share homology with 140 proteins of the Escherichia coli bacteriophage rV5. Both phages are unrelated to any other known virus, which suggests that an “rV5-like virus” genus should be created within the Myoviridae to contain these two phages.
PLOS ONE | 2012
Maarten Walmagh; Yves Briers; Sílvio Roberto Branco Santos; Joana Azeredo; Rob Lavigne
Peptidoglycan lytic enzymes (endolysins) induce bacterial host cell lysis in the late phase of the lytic bacteriophage replication cycle. Endolysins OBPgp279 (from Pseudomonas fluorescens phage OBP), PVP-SE1gp146 (Salmonella enterica serovar Enteritidis phage PVP-SE1) and 201ϕ2-1gp229 (Pseudomonas chlororaphis phage 201ϕ2-1) all possess a modular structure with an N-terminal cell wall binding domain and a C-terminal catalytic domain, a unique property for endolysins with a Gram-negative background. All three modular endolysins showed strong muralytic activity on the peptidoglycan of a broad range of Gram-negative bacteria, partly due to the presence of the cell wall binding domain. In the case of PVP-SE1gp146, this domain shows a binding affinity for Salmonella peptidoglycan that falls within the range of typical cell adhesion molecules (Kaff = 1.26×106 M−1). Remarkably, PVP-SE1gp146 turns out to be thermoresistant up to temperatures of 90°C, making it a potential candidate as antibacterial component in hurdle technology for food preservation. OBPgp279, on the other hand, is suggested to intrinsically destabilize the outer membrane of Pseudomonas species, thereby gaining access to their peptidoglycan and exerts an antibacterial activity of 1 logarithmic unit reduction. Addition of 0.5 mM EDTA significantly increases the antibacterial activity of the three modular endolysins up to 2–3 logarithmic units reduction. This research work offers perspectives towards elucidation of the structural differences explaining the unique biochemical and antibacterial properties of OBPgp279, PVP-SE1gp146 and 201ϕ2-1gp229. Furthermore, these endolysins extensively enlarge the pool of potential antibacterial compounds used against multi-drug resistant Gram-negative bacterial infections.
PLOS ONE | 2015
A. Oliveira; Marta Leite; Leon Kluskens; Sílvio Roberto Branco Santos; Luís D. R. Melo; Joana Azeredo
Endolysins, which are peptidoglycan-degrading enzymes expressed during the terminal stage of the reproduction cycle of bacteriophages, have great potential to control Gram-positive pathogens. This work describes the characterization of a novel endolysin (PlyPl23) encoded on the genome of Paenibacillus larvae phage phiIBB_Pl23 with high potential to control American foulbrood. This bacterial disease, caused by P. larvae, is widespread in North America and Europe and causes important economic losses in apiculture. The restriction to antibiotic residues in honey imposed by the EU legislation hinders its therapeutic use to combat American foulbrood and enforces the development of alternative antimicrobial methods. The new endolysin described herein has an N-acetylmuramoyl-L-alanine amidase catalytic domain and exhibits a broad-spectrum activity against common P. larvae genotypes. Moreover, the enzyme displays high antimicrobial activity in a range of pH that matches environmental conditions (pH between 5.0 and 7.0), showing its feasible application in the field. At pH 7.0, a concentration of 0.2 μM of enzyme was enough to lyse 104 CFU.mL-1 of P. larvae in no more than 2 h. The presence of sucrose and of the substances present in the larvae gut content did not affect the enzyme activity. Interestingly, an increase of activity was observed when PlyPl23 was previously incubated in royal jelly. Furthermore, in vivo safety evaluation assays demonstrated that this enzyme is not toxic to the bee larvae. The present work describes for the first time an endolysin encoded in a P. larvae phage that presents high potential to integrate a commercial product to control the problematic American foulbrood.
BMC Microbiology | 2009
Sílvio Roberto Branco Santos; Carla A. O. C. M. Carvalho; Sanna Sillankorva; Ana Nicolau; E. C. Ferreira; Joana Azeredo
BackgroundThe Double-Layer Agar (DLA) technique is extensively used in phage research to enumerate and identify phages and to isolate mutants and new phages. Many phages form large and well-defined plaques that are easily observed so that they can be enumerated when plated by the DLA technique. However, some give rise to small and turbid plaques that are very difficult to detect and count. To overcome these problems, some authors have suggested the use of dyes to improve the contrast between the plaques and the turbid host lawns. It has been reported that some antibiotics stimulate bacteria to produce phages, resulting in an increase in final titer. Thus, antibiotics might contribute to increasing plaque size in solid media.ResultsAntibiotics with different mechanisms of action were tested for their ability to enhance plaque morphology without suppressing phage development. Some antibiotics increased the phage plaque surface by up to 50-fold.ConclusionThis work presents a modification of the DLA technique that can be used routinely in the laboratory, leading to a more accurate enumeration of phages that would be difficult or even impossible otherwise.
Journal of Applied Microbiology | 2010
Sanna Sillankorva; E. A. Pleteneva; O. V. Shaburova; Sílvio Roberto Branco Santos; Carla A. O. C. M. Carvalho; Joana Azeredo; V. N. Krylov
Aims: Salmonella is a worldwide foodborne pathogen causing acute enteric infections in humans. In the recent years, the use of bacteriophages has been suggested as a possible tool to combat this zoonotic pathogen in poultry farms. This work aims to isolate and perform comparative studies of a group of phages active against a collection of specific Salmonella Enteritidis strains from Portugal and England. Also, suitable phage candidates for therapy of poultry will be selected.
Applied and Environmental Microbiology | 2010
Sílvio Roberto Branco Santos; Elisabete Fernandes; Carla A. O. C. M. Carvalho; Sanna Sillankorva; V. N. Krylov; E. A. Pleteneva; O. V. Shaburova; Ana Nicolau; E. C. Ferreira; Joana Azeredo
ABSTRACT We report the selection and amplification of the broad-host-range Salmonella phage phi PVP-SE1 in an alternative nonpathogenic host. The lytic spectrum and the phage DNA restriction profile were not modified upon replication in Escherichia coli Bl21, suggesting the possibility of producing this phage in a nonpathogenic host, contributing to the safety and easier approval of a product based on this Salmonella biocontrol agent.
Virology Journal | 2012
Carla A. O. C. M. Carvalho; Andrew M. Kropinski; Erika J. Lingohr; Sílvio Roberto Branco Santos; Jonathan King; Joana Azeredo
BackgroundCampylobacter is the leading cause of foodborne diseases worldwide. Bacteriophages (phages) are naturally occurring predators of bacteria, ubiquitous in the environment, with high host specificity and thus considered an appealing option to control bacterial pathogens. Nevertheless for an effective use of phages as antimicrobial agents, it is important to understand phage biology which renders crucial the analysis of phage genomes and proteomes. The lack of sequence data from Campylobacter phages adds further importance to these studies.MethodsvB_CcoM-IBB_35 is a broad lytic spectrum Myoviridae Campylobacter phage with high potential for therapeutic use. The genome of this phage was obtained by pyrosequencing and the sequence data was further analyzed. The proteomic analysis was performed by SDS-PAGE and Mass spectrometry.Results and conclusionsThe DNA sequence data of vB_CcoM-IBB_35 consists of five contigs for a total of 172,065 bp with an average GC content of 27%. Attempts to close the gaps between contigs were unsuccessful since the DNA preparations appear to contain substances that inhibited Taq and ϕ29 polymerases. From the 210 identified ORFs, around 60% represent proteins that were not functionally assigned. Homology exists with members of the Teequatrovirinae namely for T4 proteins involved in morphogenesis, nucleotide metabolism, transcription, DNA replication and recombination. Tandem mass spectrometric analysis revealed 38 structural proteins as part of the mature phage particle.ConclusionsGenes encoding proteins involved in the carbohydrate metabolism along with several incidences of gene duplications, split genes with inteins and introns have been rarely found in other phage genomes yet are found in this phage. We identified the genes encoding for tail fibres and for the lytic cassette, this later, expressing enzymes for bacterial capsular polysaccharides (CPS) degradation, which has not been reported before for Campylobacter phages.
Letters in Applied Microbiology | 2010
Carla A. O. C. M. Carvalho; M. Susano; Elisabete Fernandes; Sílvio Roberto Branco Santos; B. W. Gannon; Ana Nicolau; Paul Gibbs; Paula Teixeira; Joana Azeredo
Aims: Poultry meat is considered a major source of Campylobacter. This micro‐aerobic bacterium is commonly responsible for foodborne illness. This work focuses on the isolation of Campylobacter coli lytic bacteriophages (phages) against target C. coli strains.