Luis Marcelo F. Holthauzen
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luis Marcelo F. Holthauzen.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Matthew Auton; Luis Marcelo F. Holthauzen; D. Wayne Bolen
Because of its protein-denaturing ability, urea has played a pivotal role in the experimental and conceptual understanding of protein folding and unfolding. The measure of ureas ability to force a protein to unfold is given by the m value, an experimental quantity giving the free energy change for unfolding per molar urea. With the aid of Tanfords transfer model [Tanford C (1964) J Am Chem Soc 86:2050–2059], we use newly obtained group transfer free energies (GTFEs) of protein side-chain and backbone units from water to 1 M urea to account for the m value of urea, and the method reveals the anatomy of protein denaturation in terms of residue-level free energy contributions of groups newly exposed on denaturation. The GTFEs were obtained by accounting for solubility and activity coefficient ratios accompanying the transfer of glycine from water to 1 M urea. Contrary to the opinions of some researchers, the GTFEs show that urea does not denature proteins through favorable interactions with nonpolar side chains; what drives urea-induced protein unfolding is the large favorable interaction of urea with the peptide backbone. Although the m value is said to be proportional to surface area newly exposed on denaturation, only ≈25% of the area favorably contributes to unfolding (because of newly exposed backbone units), with ≈75% modestly opposing urea-induced denaturation (originating from side-chain exposure). Use of the transfer model and newly determined GTFEs achieves the long-sought goal of predicting urea-dependent cooperative protein unfolding energetics at the level of individual amino acid residues.
Protein Science | 2006
Luis Marcelo F. Holthauzen; D. Wayne Bolen
Mixtures of organic osmolytes occur in cells of many organisms, raising the question of whether their actions on protein stability are independent or synergistic. To investigate this question it is desirable to develop a system that permits evaluation of the effect of one osmolyte on the efficacy of another to either force‐fold or denature a protein. A means of evaluating the efficacy of an osmolyte is provided by its m‐value, an experimental quantity that measures the ability of the osmolyte to force a protein to unfold or fold. An experimental system is presented that enables evaluations of the m‐values of osmolytes in the presence and absence of a second osmolyte. The experimental system involves use of a marginally stable protein in 10 mM buffer (pH 7, 200 mM salt, and 34°C) that is at the midpoint of its native to denatured transition. These conditions enable determination of m‐values for protecting and denaturing osmolytes in the presence and absence of a second osmolyte, permitting assessment of the extent to which the two osmolytes affect each others efficacy. The two osmolytes investigated in this work are the denaturing osmolyte, urea, and the protecting osmolyte, sarcosine. Results show unequivocally that neither osmolyte alters the efficacy of the other in forcing the protein to fold or unfold—the osmolytes act independently on the protein despite their combined concentrations being in the multi‐molar range. These osmolytes avoid altering one anothers efficacy at these high concentrations because the number of osmolyte interaction sites on the protein is large and the binding constants are quite small. Consequently, the site occupancies are low enough in number that the two osmolytes neither compete nor cooperate in interacting with the protein.
Biochemistry | 2010
Luis Marcelo F. Holthauzen; Jörg Rösgen; D. Wayne Bolen
Using osmolyte cosolvents, we show that hydrogen-bonding contributions can be separated from hydrophobic interactions in the denatured state ensemble (DSE). Specifically, the effects of urea and the protecting osmolytes sarcosine and TMAO are reported on the thermally unfolded DSE of Nank4−7*, a truncated notch ankyrin protein. The high thermal energy of this state in the presence and absence of 6 M urea or 1 M sarcosine solution is sufficient to allow large changes in the hydrodynamic radius (Rh) and secondary structure accretion without populating the native state. The CD change at 228 nm is proportional to the inverse of the volume of the DSE, giving a compact species equivalent to a premolten globule in 1 M sarcosine. The same general effects portraying hierarchical folding observed in the DSE at 55 °C are also often seen at room temperature. Analysis of Nank4−7* DSE structural energetics at room temperature as a function of solvent provides rationale for understanding the structural and dimensional effects in terms of how modulation of the solvent alters solvent quality for the peptide backbone. Results show that while the strength of hydrophobic interactions changes little on transferring the DSE from 6 M urea to water and then to 1 M TMAO, backbone−backbone (hydrogen-bonding) interactions are greatly enhanced due to progressively poorer solvent quality for the peptide backbone. Thus, increased intrachain hydrogen bonding guides secondary structure accretion and DSE contraction as solvent quality is decreased. This process is accompanied by increasing hydrophobic contacts as chain contraction gathers hydrophobes into proximity and the declining urea−backbone free energy gradient reaches urea concentrations that are energetically insufficient to keep hydrophobes apart in the DSE.
Journal of Biological Chemistry | 2010
Muralidhar L. Hegde; Pavana M. Hegde; Luis Marcelo F. Holthauzen; Tapas K. Hazra; K.S. Jagannatha Rao; Sankar Mitra
Dyshomeostasis of transition metals iron and copper as well as accumulation of oxidative DNA damage have been implicated in multitude of human neurodegenerative diseases, including Alzheimer disease and Parkinson disease. These metals oxidize DNA bases by generating reactive oxygen species. Most oxidized bases in mammalian genomes are repaired via the base excision repair pathway, initiated with one of four major DNA glycosylases: NTH1 or OGG1 (of the Nth family) or NEIL1 or NEIL2 (of the Nei family). Here we show that Fe(II/III) and Cu(II) at physiological levels bind to NEIL1 and NEIL2 to alter their secondary structure and strongly inhibit repair of mutagenic 5-hydroxyuracil, a common cytosine oxidation product, both in vitro and in neuroblastoma (SH-SY5Y) cell extract by affecting the base excision and AP lyase activities of NEILs. The specificity of iron/copper inhibition of NEILs is indicated by a lack of similar inhibition of OGG1, which also indicated that the inhibition is due to metal binding to the enzymes and not DNA. Fluorescence and surface plasmon resonance studies show submicromolar binding of copper/iron to NEILs but not OGG1. Furthermore, Fe(II) inhibits the interaction of NEIL1 with downstream base excision repair proteins DNA polymerase β and flap endonuclease-1 by 4–6-fold. These results indicate that iron/copper overload in the neurodegenerative diseases could act as a double-edged sword by both increasing oxidative genome damage and preventing their repair. Interestingly, specific chelators, including the natural chemopreventive compound curcumin, reverse the inhibition of NEILs both in vitro and in cells, suggesting their therapeutic potential.
Journal of Molecular Biology | 2013
Muralidhar L. Hegde; Susan E. Tsutakawa; Pavana M. Hegde; Luis Marcelo F. Holthauzen; Jing Li; Numan Oezguen; Vincent J. Hilser; John A. Tainer; Sankar Mitra
NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1s lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1s interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1s intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1s CTD, a feature that may be critical to providing specificity for NEIL1s multiple, functional interactions.
Journal of Biological Chemistry | 2014
Zhuoyang Lu; Yun Wang; Fang Chen; M. V. V. V. Sekhar Reddy; Lin Luo; Suchithra Seshadrinathan; Lei Zhang; Luis Marcelo F. Holthauzen; Ann Marie Craig; Gang Ren; Gabby Rudenko
Background: Calsyntenin-3 (Cstn3) promotes synapse development, controversially interacting with neurexin 1α (n1α). Results: Cstn3 binds n1α directly, and its structure adopts multiple forms. Conclusion: Cstn3 interacts with n1α via a novel mechanism and can produce distinct trans-synaptic bridges with n1α. Significance: A complex portfolio of molecular interactions between proteins implicated in autism spectrum disorder and schizophrenia guide synapse development. Calsyntenin 3 (Cstn3 or Clstn3), a recently identified synaptic organizer, promotes the development of synapses. Cstn3 localizes to the postsynaptic membrane and triggers presynaptic differentiation. Calsyntenin members play an evolutionarily conserved role in memory and learning. Cstn3 was recently shown in cell-based assays to interact with neurexin 1α (n1α), a synaptic organizer that is implicated in neuropsychiatric disease. Interaction would permit Cstn3 and n1α to form a trans-synaptic complex and promote synaptic differentiation. However, it is contentious whether Cstn3 binds n1α directly. To understand the structure and function of Cstn3, we determined its architecture by electron microscopy and delineated the interaction between Cstn3 and n1α biochemically and biophysically. We show that Cstn3 ectodomains form monomers as well as tetramers that are stabilized by disulfide bonds and Ca2+, and both are probably flexible in solution. We show further that the extracellular domains of Cstn3 and n1α interact directly and that both Cstn3 monomers and tetramers bind n1α with nanomolar affinity. The interaction is promoted by Ca2+ and requires minimally the LNS domain of Cstn3. Furthermore, Cstn3 uses a fundamentally different mechanism to bind n1α compared with other neurexin partners, such as the synaptic organizer neuroligin 2, because Cstn3 does not strictly require the sixth LNS domain of n1α. Our structural data suggest how Cstn3 as a synaptic organizer on the postsynaptic membrane, particularly in tetrameric form, may assemble radially symmetric trans-synaptic bridges with the presynaptic synaptic organizer n1α to recruit and spatially organize proteins into networks essential for synaptic function.
FEBS Letters | 2012
Sung Ho Jeon; Kwanbok Lee; Kwang Soo Lee; Nawapol Kunkeaw; Betty H. Johnson; Luis Marcelo F. Holthauzen; Bin Gong; Chanvit Leelayuwat; Yong Sun Lee
We have recently shown that nc886 (pre‐miR‐886 or vtRNA2‐1) is not a genuine microRNA precursor nor a vault RNA, but a novel type of non‐coding RNA that represses PKR, a double‐stranded RNA (dsRNA) dependent kinase. Here we have characterized their direct physical association. PKRs two RNA binding domains form a specific and stable complex with nc886s central portion, without any preference to its 5′‐end structure. By binding to PKR with a comparable affinity, nc886 competes with dsRNA and attenuates PKR activation by dsRNA. Our data suggest that nc886 sets a threshold for PKR activation so that it occurs only during genuine viral infection but not by a minute level of fortuitous cellular dsRNA.
Methods in Enzymology | 2011
Luis Marcelo F. Holthauzen; Matthew Auton; Mikhail Sinev; Jörg Rösgen
Protein scientists have long used cosolutes to study protein stability. While denaturants, such as urea, have been employed for a long time, the attention became focused more recently on protein stabilizers, including osmolytes. Here, we provide practical experimental instructions for the use of both stabilizing and denaturing osmolytes with proteins, as well as data evaluation strategies. We focus on protein stability in the presence of cosolutes and their mixtures at constant and variable temperature.
Journal of Biological Chemistry | 2016
Zhuoyang Lu; M. V. V. V. Sekhar Reddy; Jianfang Liu; Ana Kalichava; Jiankang Liu; Lei Zhang; Fang Chen; Yun Wang; Luis Marcelo F. Holthauzen; Mark A. White; Suchithra Seshadrinathan; Xiaoying Zhong; Gang Ren; Gabby Rudenko
Contactin-associated protein-like 2 (CNTNAP2) is a large multidomain neuronal adhesion molecule implicated in a number of neurological disorders, including epilepsy, schizophrenia, autism spectrum disorder, intellectual disability, and language delay. We reveal here by electron microscopy that the architecture of CNTNAP2 is composed of a large, medium, and small lobe that flex with respect to each other. Using epitope labeling and fragments, we assign the F58C, L1, and L2 domains to the large lobe, the FBG and L3 domains to the middle lobe, and the L4 domain to the small lobe of the CNTNAP2 molecular envelope. Our data reveal that CNTNAP2 has a very different architecture compared with neurexin 1α, a fellow member of the neurexin superfamily and a prototype, suggesting that CNTNAP2 uses a different strategy to integrate into the synaptic protein network. We show that the ectodomains of CNTNAP2 and contactin 2 (CNTN2) bind directly and specifically, with low nanomolar affinity. We show further that mutations in CNTNAP2 implicated in autism spectrum disorder are not segregated but are distributed over the whole ectodomain. The molecular shape and dimensions of CNTNAP2 place constraints on how CNTNAP2 integrates in the cleft of axo-glial and neuronal contact sites and how it functions as an organizing and adhesive molecule.
Journal of Virology | 2016
Keerthi Gottipati; Luis Marcelo F. Holthauzen; Nicolas Ruggli; Kyung H. Choi
ABSTRACT Interferon regulatory factor 3 (IRF3) is a transcription factor involved in the activation of type I alpha/beta interferon (IFN-α/β) in response to viral infection. Upon viral infection, the IRF3 monomer is activated into a phosphorylated dimer, which induces the transcription of interferon genes in the nucleus. Viruses have evolved several ways to target IRF3 in order to subvert the innate immune response. Pestiviruses, such as classical swine fever virus (CSFV), target IRF3 for ubiquitination and subsequent proteasomal degradation. This is mediated by the viral protein Npro that interacts with IRF3, but the molecular details for this interaction are largely unknown. We used recombinant Npro and IRF3 proteins and show that Npro interacts with IRF3 directly without additional proteins and forms a soluble 1:1 complex. The full-length IRF3 but not merely either of the individual domains is required for this interaction. The interaction between Npro and IRF3 is not dependent on the activation state of IRF3, since Npro binds to a constitutively active form of IRF3 in the presence of its transcriptional coactivator, CREB-binding protein (CBP). The results indicate that the Npro-binding site on IRF3 encompasses a region that is unperturbed by the phosphorylation and subsequent activation of IRF3 and thus excludes the dimer interface and CBP-binding site. IMPORTANCE The pestivirus N-terminal protease, Npro, is essential for evading the hosts immune system by facilitating the degradation of interferon regulatory factor 3 (IRF3). However, the nature of the Npro interaction with IRF3, including the IRF3 species (inactive monomer versus activated dimer) that Npro targets for degradation, is largely unknown. We show that classical swine fever virus Npro and porcine IRF3 directly interact in solution and that full-length IRF3 is required for interaction with Npro. Additionally, Npro interacts with a constitutively active form of IRF3 bound to its transcriptional cofactor, the CREB-binding protein. This is the first study to demonstrate that Npro is able to bind both inactive IRF3 monomer and activated IRF3 dimer and thus likely targets both IRF3 species for ubiquitination and proteasomal degradation.