Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luisa W. Hugerth is active.

Publication


Featured researches published by Luisa W. Hugerth.


Applied and Environmental Microbiology | 2014

DegePrime, a Program for Degenerate Primer Design for Broad-Taxonomic-Range PCR in Microbial Ecology Studies

Luisa W. Hugerth; Hugo Wefer; Sverker Lundin; Hedvig E. Jakobsson; Mathilda Lindberg; Sandra Rodin; Lars Engstrand; Anders F. Andersson

ABSTRACT The taxonomic composition of a microbial community can be deduced by analyzing its rRNA gene content by, e.g., high-throughput DNA sequencing or DNA chips. Such methods typically are based on PCR amplification of rRNA gene sequences using broad-taxonomic-range PCR primers. In these analyses, the use of optimal primers is crucial for achieving an unbiased representation of community composition. Here, we present the computer program DegePrime that, for each position of a multiple sequence alignment, finds a degenerate oligomer of as high coverage as possible and outputs its coverage among taxonomic divisions. We show that our novel heuristic, which we call weighted randomized combination, performs better than previously described algorithms for solving the maximum coverage degenerate primer design problem. We previously used DegePrime to design a broad-taxonomic-range primer pair that targets the bacterial V3-V4 region (341F-805R) (D. P. Herlemann, M. Labrenz, K. Jurgens, S. Bertilsson, J. J. Waniek, and A. F. Andersson, ISME J. 5:1571–1579, 2011, http://dx.doi.org/10.1038/ismej.2011.41), and here we use the program to significantly increase the coverage of a primer pair (515F-806R) widely used for Illumina-based surveys of bacterial and archaeal diversity. By comparison with shotgun metagenomics, we show that the primers give an accurate representation of microbial diversity in natural samples.


Environmental Microbiology | 2015

Disentangling seasonal bacterioplankton population dynamics by high‐frequency sampling

Markus V. Lindh; Johanna Sjöstedt; Anders F. Andersson; Federico Baltar; Luisa W. Hugerth; Daniel Lundin; Saraladevi Muthusamy; Catherine Legrand; Jarone Pinhassi

Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure.


PLOS ONE | 2014

Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia.

Luisa W. Hugerth; Emilie Muller; Yue O. O. Hu; Laura Lebrun; Hugo Roume; Daniel Lundin; Paul Wilmes; Anders F. Andersson

High-throughput sequencing of ribosomal RNA gene (rDNA) amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant regions have been well described, no truly systematic design of 18S rDNA primers aimed at resolving eukaryotic diversity has yet been reported. Here we used 31,862 18S rDNA sequences to design a set of broad-taxonomic range degenerate PCR primers. We simulated the phylogenetic information that each candidate primer pair would retrieve using paired- or single-end reads of various lengths, representing different sequencing technologies. Primer pairs targeting the V4 region performed best, allowing discrimination with paired-end reads as short as 150 bp (with 75% accuracy at genus level). The conditions for PCR amplification were optimised for one of these primer pairs and this was used to amplify 18S rDNA sequences from isolates as well as from a range of environmental samples which were then Illumina sequenced and analysed, revealing good concordance between expected and observed results. In summary, the reported primer sets will allow minimally biased assessment of eukaryotic diversity in different microbial ecosystems.


Genome Biology | 2015

Metagenome-assembled genomes uncover a global brackish microbiome

Luisa W. Hugerth; John Larsson; Johannes Alneberg; Markus V. Lindh; Catherine Legrand; Jarone Pinhassi; Anders F. Andersson

BackgroundMicrobes are main drivers of biogeochemical cycles in oceans and lakes. Although the genome is a foundation for understanding the metabolism, ecology and evolution of an organism, few bacterioplankton genomes have been sequenced, partly due to difficulties in cultivating them.ResultsWe use automatic binning to reconstruct a large number of bacterioplankton genomes from a metagenomic time-series from the Baltic Sea, one of world’s largest brackish water bodies. These genomes represent novel species within typical freshwater and marine clades, including clades not previously sequenced. The genomes’ seasonal dynamics follow phylogenetic patterns, but with fine-grained lineage-specific variations, reflected in gene-content. Signs of streamlining are evident in most genomes, and estimated genome sizes correlate with abundance variation across filter size fractions. Comparing the genomes with globally distributed metagenomes reveals significant fragment recruitment at high sequence identity from brackish waters in North America, but little from lakes or oceans. This suggests the existence of a global brackish metacommunity whose populations diverged from freshwater and marine relatives over 100,000 years ago, long before the Baltic Sea was formed (8000 years ago). This markedly contrasts to most Baltic Sea multicellular organisms, which are locally adapted populations of freshwater or marine counterparts.ConclusionsWe describe the gene content, temporal dynamics and biogeography of a large set of new bacterioplankton genomes assembled from metagenomes. We propose that brackish environments exert such strong selection that lineages adapted to them flourish globally with limited influence from surrounding aquatic communities.


Frontiers in Microbiology | 2017

Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life

Linda Wampach; Anna Heintz-Buschart; Angela Hogan; Emilie Muller; Shaman Narayanasamy; Cédric C. Laczny; Luisa W. Hugerth; Lutz Bindl; Jean Bottu; Anders F. Andersson; Carine De Beaufort; Paul Wilmes

Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract.


Environmental Microbiology | 2017

Metapopulation theory identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to thousands of kilometers.

Markus V. Lindh; Johanna Sjöstedt; Börje Ekstam; Michele Casini; Daniel Lundin; Luisa W. Hugerth; Yue O. O. Hu; Anders F. Andersson; Agneta Andersson; Catherine Legrand; Jarone Pinhassi

Metapopulation theory developed in terrestrial ecology provides applicable frameworks for interpreting the role of local and regional processes in shaping species distribution patterns. Yet, empirical testing of metapopulation models on microbial communities is essentially lacking. We determined regional bacterioplankton dynamics from monthly transect sampling in the Baltic Sea Proper using 16S rRNA gene sequencing. A strong positive trend was found between local relative abundance and occupancy of populations. Notably, the occupancy-frequency distributions were significantly bimodal with a satellite mode of rare endemic populations and a core mode of abundant cosmopolitan populations (e.g. Synechococcus, SAR11 and SAR86 clade members). Temporal changes in population distributions supported several theoretical frameworks. Still, bimodality was found among bacterioplankton communities across the entire Baltic Sea, and was also frequent in globally distributed datasets. Datasets spanning waters with widely different physicochemical characteristics or environmental gradients typically lacked significant bimodal patterns. When such datasets were divided into subsets with coherent environmental conditions, bimodal patterns emerged, highlighting the importance of positive feedbacks between local abundance and occupancy within specific biomes. Thus, metapopulation theory applied to microbial biogeography can provide novel insights into the mechanisms governing shifts in biodiversity resulting from natural or anthropogenically induced changes in the environment.


bioRxiv | 2018

A comprehensive automated pipeline for human microbiome sampling, 16S rRNA gene sequencing and bioinformatics processing

Luisa W. Hugerth; Maike Seifert; Alexandra A L Pennhag; Juan Du; Marica C Hamsten; Lars Engstrand

The advent of affordable high-throughput DNA sequencing has opened up a golden age of studies in the human microbiome. In order to understand the role of the human microbiota, standardized methods for large-scale, population-level studies are needed to avoid underpowered or poorly designed studies. The biggest bottlenecks to population-level microbiomics are sample collection, storage and DNA extraction. Here, we describe a flexible automated approach to process intestinal biopsies, fecal samples and vaginal swabs from sample collection to OTU table. We have evaluated storage conditions, DNA extraction methods, PCR strategies and bioinformatic pipelines for these three sample types, and present here a set of guidelines and best practices for each of these steps.


Scientific Data | 2018

BARM and BalticMicrobeDB, a reference metagenome and interface to meta-omic data for the Baltic Sea

Johannes Alneberg; John Sundh; Christin Bennke; Sara Beier; Daniel Lundin; Luisa W. Hugerth; Jarone Pinhassi; Veljo Kisand; Lasse Riemann; Klaus Jürgens; Matthias Labrenz; Anders F. Andersson

The Baltic Sea is one of the world’s largest brackish water bodies and is characterised by pronounced physicochemical gradients where microbes are the main biogeochemical catalysts. Meta-omic methods provide rich information on the composition of, and activities within, microbial ecosystems, but are computationally heavy to perform. We here present the Baltic Sea Reference Metagenome (BARM), complete with annotated genes to facilitate further studies with much less computational effort. The assembly is constructed using 2.6 billion metagenomic reads from 81 water samples, spanning both spatial and temporal dimensions, and contains 6.8 million genes that have been annotated for function and taxonomy. The assembly is useful as a reference, facilitating taxonomic and functional annotation of additional samples by simply mapping their reads against the assembly. This capability is demonstrated by the successful mapping and annotation of 24 external samples. In addition, we present a public web interface, BalticMicrobeDB, for interactive exploratory analysis of the dataset.


New Phytologist | 2018

Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root‐associated soil of a wild perennial herb

Pil U. Rasmussen; Luisa W. Hugerth; F. Guillaume Blanchet; Anders F. Andersson; Björn D. Lindahl; Ayco J. M. Tack

Summary Arbuscular mycorrhizal (AM) fungi form diverse communities and are known to influence above‐ground community dynamics and biodiversity. However, the multiscale patterns and drivers of AM fungal composition and diversity are still poorly understood. We sequenced DNA markers from roots and root‐associated soil from Plantago lanceolata plants collected across multiple spatial scales to allow comparison of AM fungal communities among neighbouring plants, plant subpopulations, nearby plant populations, and regions. We also measured soil nutrients, temperature, humidity, and community composition of neighbouring plants and nonAM root‐associated fungi. AM fungal communities were already highly dissimilar among neighbouring plants (c. 30 cm apart), albeit with a high variation in the degree of similarity at this small spatial scale. AM fungal communities were increasingly, and more consistently, dissimilar at larger spatial scales. Spatial structure and environmental drivers explained a similar percentage of the variation, from 7% to 25%. A large fraction of the variation remained unexplained, which may be a result of unmeasured environmental variables, species interactions and stochastic processes. We conclude that AM fungal communities are highly variable among nearby plants. AM fungi may therefore play a major role in maintaining small‐scale variation in community dynamics and biodiversity.


Geomicrobiology Journal | 2017

Mineral Type Structures Soil Microbial Communities

Engy Ahmed; Luisa W. Hugerth; Jürg Brendan Logue; Volker Brüchert; Anders F. Andersson; Sara J. M. Holmström

ABSTRACT Soil microorganisms living in close contact with minerals play key roles in the biogeochemical cycling of elements, soil formation, and plant nutrition. Yet, the composition of microbial communities inhabiting the mineralosphere (i.e., the soil surrounding minerals) is poorly understood. Here, we explored the composition of soil microbial communities associated with different types of minerals in various soil horizons. To this effect, a field experiment was set up in which mineral specimens of apatite, biotite, and oligoclase were buried in the organic, eluvial, and upper illuvial horizons of a podzol soil. After an incubation period of two years, the soil attached to the mineral surfaces was collected, and microbial communities were analyzed by means of Illumina MiSeq sequencing of the 16S (prokaryotic) and 18S (eukaryotic) ribosomal RNA genes. We found that both composition and diversity of bacterial, archaeal, and fungal communities varied across the different mineral surfaces, and that mineral type had a greater influence on structuring microbial assemblages than soil horizon. Thus, our findings emphasize the importance of mineral surfaces as ecological niches in soils.

Collaboration


Dive into the Luisa W. Hugerth's collaboration.

Top Co-Authors

Avatar

Anders F. Andersson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Alneberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yue O. O. Hu

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge