Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luke A. Beggs is active.

Publication


Featured researches published by Luke A. Beggs.


American Journal of Physiology-endocrinology and Metabolism | 2014

Musculoskeletal and prostate effects of combined testosterone and finasteride administration in older hypogonadal men: a randomized, controlled trial

Stephen E. Borst; Joshua F. Yarrow; Christine F. Conover; Unyime Nseyo; John R. Meuleman; Judyta A. Lipinska; Randy W. Braith; Darren T. Beck; Jeffrey S. Martin; Matthew Morrow; Shirley Roessner; Luke A. Beggs; Sean C. McCoy; nd Darryl F. Cannady; Jonathan J. Shuster

Testosterone acts directly at androgen receptors and also exerts potent actions following 5α-reduction to dihydrotestosterone (DHT). Finasteride (type II 5α-reductase inhibitor) lowers DHT and is used to treat benign prostatic hyperplasia. However, it is unknown whether elevated DHT mediates either beneficial musculoskeletal effects or prostate enlargement resulting from higher-than-replacement doses of testosterone. Our purpose was to determine whether administration of testosterone plus finasteride to older hypogonadal men could produce musculoskeletal benefits without prostate enlargement. Sixty men aged ≥60 yr with a serum testosterone concentration of ≤300 ng/dl or bioavailable testosterone ≤70 ng/dl received 52 wk of treatment with testosterone enanthate (TE; 125 mg/wk) vs. vehicle, paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased upper and lower body muscle strength by 8-14% (P = 0.015 to <0.001), fat-free mass 4.04 kg (P = 0.032), lumbar spine bone mineral density (BMD) 4.19% (P < 0.001), and total hip BMD 1.96% (P = 0.024) while reducing total body fat -3.87 kg (P < 0.001) and trunk fat -1.88 kg (P = 0.0051). In the first 3 mo, testosterone increased hematocrit 4.13% (P < 0.001). Coadministration of finasteride did not alter any of these effects. Over 12 mo, testosterone also increased prostate volume 11.4 cm(3) (P = 0.0051), an effect that was completely prevented by finasteride (P = 0.0027). We conclude that a higher-than-replacement TE combined with finasteride significantly increases muscle strength and BMD and reduces body fat without causing prostate enlargement. These results demonstrate that elevated DHT mediates testosterone-induced prostate enlargement but is not required for benefits in musculoskeletal or adipose tissue.


Journal of Bone and Mineral Research | 2015

SCLEROSTIN INHIBITION PREVENTS SPINAL CORD INJURY INDUCED CANCELLOUS BONE LOSS

Luke A. Beggs; Fan Ye; Payal Ghosh; Darren T. Beck; Christine F. Conover; Alexander Balaez; Julie R. Miller; Ean G. Phillips; Nigel Zheng; Alyssa A. Williams; JIgnacio Aguirre; Thomas J. Wronski; Prodip Bose; Stephen E. Borst; Joshua F. Yarrow

Spinal cord injury (SCI) results in rapid and extensive sublesional bone loss. Sclerostin, an osteocyte‐derived glycoprotein that negatively regulates intraskeletal Wnt signaling, is elevated after SCI and may represent a mechanism underlying this excessive bone loss. However, it remains unknown whether pharmacologic sclerostin inhibition ameliorates bone loss subsequent to SCI. Our primary purposes were to determine whether a sclerostin antibody (Scl‐Ab) prevents hindlimb cancellous bone loss in a rodent SCI model and to compare the effects of a Scl‐Ab to that of testosterone‐enanthate (TE), an agent that we have previously shown prevents SCI‐induced bone loss. Fifty‐five (n = 11–19/group) skeletally mature male Sprague‐Dawley rats were randomized to receive: (A) SHAM surgery (T8 laminectomy), (B) moderate‐severe (250 kilodyne) SCI, (C) 250 kilodyne SCI + TE (7.0 mg/wk, im), or (D) 250 kilodyne SCI + Scl‐Ab (25 mg/kg, twice weekly, sc) for 3 weeks. Twenty‐one days post‐injury, SCI animals exhibited reduced hindlimb cancellous bone volume at the proximal tibia (via μCT and histomorphometry) and distal femur (via μCT), characterized by reduced trabecular number and thickness. SCI also reduced trabecular connectivity and platelike trabecular structures, indicating diminished structural integrity of the remaining cancellous network, and produced deficits in cortical bone (femoral diaphysis) strength. Scl‐Ab and TE both prevented SCI‐induced cancellous bone loss, albeit via differing mechanisms. Specifically, Scl‐Ab increased osteoblast surface and bone formation, indicating direct bone anabolic effects, whereas TE reduced osteoclast surface with minimal effect on bone formation, indicating antiresorptive effects. The deleterious microarchitectural alterations in the trabecular network were also prevented in SCI + Scl‐Ab and SCI + TE animals, whereas only Scl‐Ab completely prevented the reduction in cortical bone strength. Our findings provide the first evidence indicating that sclerostin inhibition represents a viable treatment to prevent SCI‐induced cancellous and cortical bone deficits and provides preliminary rationale for future clinical trials focused on evaluating whether Scl‐Ab prevents osteoporosis in the SCI population.


American Journal of Physiology-endocrinology and Metabolism | 2014

Testosterone alters iron metabolism and stimulates red blood cell production independently of dihydrotestosterone

Luke A. Beggs; Joshua F. Yarrow; Christine F. Conover; John R. Meuleman; Darren T. Beck; Matthew Morrow; Baiming Zou; Jonathan J. Shuster; Stephen E. Borst

Testosterone (T) stimulates erythropoiesis and regulates iron homeostasis. However, it remains unknown whether the (type II) 5α-reduction of T to dihydrotestosterone (DHT) mediates these androgenic effects, as it does in some other tissues. Our purpose was to determine whether inhibition of type II 5α-reductase (via finasteride) alters red blood cell (RBC) production and serum markers of iron homeostasis subsequent to testosterone-enanthate (TE) administration in older hypogonadal men. Sixty men aged ≥60 yr with serum T <300 ng/dl or bioavailable T <70 ng/dl received treatment with TE (125 mg/wk) vs. vehicle paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased RBC count 9%, hematocrit 4%, and hemoglobin 8% while suppressing serum hepcidin 57% (P < 0.001 for all measurements). Most of the aforementioned changes occurred in the first 3 mo of treatment, and finasteride coadministration did not significantly alter any of these effects. TE also reduced serum ferritin 32% (P = 0.002) within 3 mo of treatment initiation without altering iron, transferrin, or transferrin saturation. We conclude that TE stimulates erythropoiesis and alters iron homeostasis independently of the type II 5α-reductase enzyme. These results demonstrate that elevated DHT is not required for androgen-mediated erythropoiesis or for alterations in iron homeostasis that would appear to support iron incorporation into RBCs.


Journal of Bone and Mineral Research | 2014

Influence of Aromatase Inhibition on the Bone‐Protective Effects of Testosterone

Darren T. Beck; Joshua F. Yarrow; Luke A. Beggs; Dana M. Otzel; Fan Ye; Christine F. Conover; Julie R. Miller; Alexander Balaez; Sarah M. Combs; Alicia M. Leeper; Alyssa A. Williams; Stephanie A. Lachacz; Nigel Zheng; Thomas J. Wronski; Stephen E. Borst

The influence of the aromatase enzyme in androgen‐induced bone maintenance after skeletal maturity remains somewhat unclear. Our purpose was to determine whether aromatase activity is essential to androgen‐induced bone maintenance. Ten‐month‐old male Fisher 344 rats (n = 73) were randomly assigned to receive Sham surgery, orchiectomy (ORX), ORX + anastrozole (AN; aromatase inhibitor), ORX + testosterone‐enanthate (TE, 7.0 mg/wk), ORX + TE + AN, ORX + trenbolone‐enanthate (TREN; nonaromatizable, nonestrogenic testosterone analogue; 1.0 mg/wk), or ORX + TREN + AN. ORX animals exhibited histomorphometric indices of high‐turnover osteopenia and reduced cancellous bone volume compared with Shams. Both TE and TREN administration suppressed cancellous bone turnover similarly and fully prevented ORX‐induced cancellous bone loss. TE‐ and TREN‐treated animals also exhibited greater femoral neck shear strength than ORX animals. AN co‐administration slightly inhibited the suppression of bone resorption in TE‐treated animals but did not alter TE‐induced suppression of bone formation or the osteogenic effects of this androgen. In TREN‐treated animals, AN co‐administration produced no discernible effects on cancellous bone turnover or bone volume. ORX animals also exhibited reduced levator ani/bulbocavernosus (LABC) muscle mass and elevated visceral adiposity. In contrast, TE and TREN produced potent myotrophic effects in the LABC muscle and maintained fat mass at the level of Shams. AN co‐administration did not alter androgen‐induced effects on muscle or fat. In conclusion, androgens are able to induce direct effects on musculoskeletal and adipose tissue, independent of aromatase activity.


PLOS ONE | 2012

Influence of Androgens on Circulating Adiponectin in Male and Female Rodents

Joshua F. Yarrow; Luke A. Beggs; Christine F. Conover; Sean C. McCoy; Darren T. Beck; Stephen E. Borst

Several endocrine factors, including sex-steroid hormones are known to influence adiponectin secretion. Our purpose was to evaluate the influence of testosterone and of the synthetic non-aromatizable/non-5α reducible androgen 17β-hydroxyestra-4,9,11-trien-3-one (trenbolone) on circulating adiponectin and adiponectin protein expression within visceral fat. Young male and female F344 rats underwent sham surgery (SHAM), gonadectomy (GX), or GX plus supraphysiologic testosterone-enanthate (TE) administration. Total circulating adiponectin was 39% higher in intact SHAM females than SHAM males (p<0.05). GX increased total adiponectin by 29–34% in both sexes (p<0.05), while TE reduced adiponectin to concentrations that were 46–53% below respective SHAMs (p≤0.001) and ablated the difference in adiponectin between sexes. No differences in high molecular weight (HMW) adiponectin were observed between sexes or treatments. Adiponectin concentrations were highly and negatively associated with serum testosterone (males: r = −0.746 and females: r = −0.742, p≤0.001); however, no association was present between adiponectin and estradiol. In separate experiments, trenbolone-enanthate (TREN) prevented the GX-induced increase in serum adiponectin (p≤0.001) in young animals, with Low-dose TREN restoring adiponectin to the level of SHAMs and higher doses of TREN reducing adiponectin to below SHAM concentrations (p≤0.001). Similarly, TREN reduced adiponectin protein expression within visceral fat (p<0.05). In adult GX males, Low-dose TREN also reduced total adiponectin and visceral fat mass to a similar magnitude as TE, while increasing serum HMW adiponectin above SHAM and GX animals (p<0.05). Serum adiponectin was positively associated with visceral fat mass in young (r = 0.596, p≤0.001) and adult animals (r = 0.657, p≤0.001). Our results indicate that androgens reduce circulating total adiponectin concentrations in a dose-dependent manner, while maintaining HMW adiponectin. This change is directionally similar to the androgen-induced lipolytic effects on visceral adiposity and equal in magnitude between TE and TREN, suggesting that neither the aromatization nor the 5α reduction of androgens is required for this effect.


Andrologia | 2016

Effects of testosterone treatment on markers of skeletal muscle ribosome biogenesis.

Christopher B. Mobley; Petey W. Mumford; Wesley C. Kephart; Christine F. Conover; Luke A. Beggs; Alexander Balaez; Joshua F. Yarrow; Stephen E. Borst; D. T. Beck; Michael D. Roberts

The effects of testosterone (TEST) treatment on markers of skeletal muscle ribosome biogenesis in vitro and in vivo were examined. C2C12 myotubes were treated with 100 nm TEST for short‐term (24‐h) and longer‐term (96‐h) treatments. Moreover, male 10‐month‐old Fischer 344 rats were housed for 4 weeks, and the following groups were included in this study: (i) Sham‐operated (Sham) rats, (ii) orchiectomised rats (ORX) and (iii) ORX+TEST‐treated rats (7.0 mg week−1). For in vitro data, TEST treatment increased c‐Myc mRNA expression by 38% (P = 0.004) after 96 h, but did not affect total RNA, 47S pre‐rRNA, Raptor mRNA, Nop56 mRNA, Bop1 mRNA, Ncl mRNA at 24 h or 96 h following the treatment. For in vivo data, ORX decreased levator ani/bulbocavernosus (LABC) myofibril protein versus Sham (P = 0.006), whereas ORX+TEST (P = 0.015) rescued this atrophic effect. ORX also decreased muscle ribosome content (total RNA) compared to Sham (P = 0.046), whereas ORX+TEST tended to rescue this effect (P = 0.057). However, other markers of ribosome biogenesis including c‐Myc mRNA, Nop56 mRNA, Bop1 mRNA, Ncl mRNA decreased with ORX independently of TEST treatments (P < 0.05). Finally, lower phospho‐(Ser235/236)‐to‐total rps6 protein and lower rpl5 protein levels existed in ORX+TEST rats versus other treatments, suggesting that chronic TEST treatment may lower translational capacity.


Steroids | 2013

Invalidation of a commercially available human 5α-dihydrotestosterone immunoassay.

Joshua F. Yarrow; Darren T. Beck; Christine F. Conover; Luke A. Beggs; Bruce A. Goldberger; Stephen E. Borst

Enzyme immunoassays (EIA) are commonly utilized for the evaluation of androgens in biological fluids; however, careful consideration must be given to cross-reactivity with other endogenous sex-steroid hormones. Our purpose was to determine the validity of a commonly-utilized commercially-available dihydrotestosterone (DHT) EIA. Serum samples obtained from older hypogonadal men who participated in a 12-month randomized controlled trial evaluating the effects of testosterone-enanthate (125 mg/week) or vehicle in combination with finasteride (5mg/day) or placebo were assayed for DHT via EIA and using a validated gold-standard LC-MS/MS approach. Additionally, commercially-available (DHT-free) buffer containing graded testosterone doses was evaluated by DHT immunoassay. DHT concentrations measured via EIA were 79% to >1000% higher than values obtained by LC-MS/MS (p<0.05), with the largest differences (415-1128%) occuring in groups receiving finasteride. Both LC-MS/MS and EIA indicated that testosterone-enanthate increased serum DHT to a similar magnitude. In contrast, finasteride-induced reductions in DHT were detected by LC-MS/MS, but not EIA (p<0.05). No significant associations were present for DHT concentrations between measurement techniques. Cross-reactivity of testosterone with the immunoassay ranged from 18% to 99% and DHT concentrations measured by EIA were highly associated with the spiked testosterone concentrations in DHT-free buffer (r=0.885, p<0.001). In conclusion, we provide evidence invalidating a commonly-utilized commercially-available DHT immunoassay because significant cross-reactivity exists between testosterone and the EIA and because the changes in DHT observed via EIA were not associated with a validated gold-standard measurement technique. The cross-reactivity of testosterone is particularly concerning because testsoterone is present in 100-fold greater concentrations than is DHT within the circulation.


Journal of Applied Physiology | 2016

Testosterone inhibits expression of lipogenic genes in visceral fat by an estrogen-dependent mechanism

A. Maleah Holland; Michael D. Roberts; Petey W. Mumford; C. Brooks Mobley; Wesley C. Kephart; Christine F. Conover; Luke A. Beggs; Alexander Balaez; Dana M. Otzel; Joshua F. Yarrow; Stephen E. Borst; Darren T. Beck

The influence of the aromatase enzyme on the chronic fat-sparing effects of testosterone requires further elucidation. Our purpose was to determine whether chronic anastrozole (AN, an aromatase inhibitor) treatment alters testosterone-mediated lipolytic/lipogenic gene expression in visceral fat. Ten-month-old Fischer 344 rats (n = 6/group) were subjected to sham surgery (SHAM), orchiectomy (ORX), ORX + treatment with testosterone enanthate (TEST, 7.0 mg/wk), or ORX + TEST + AN (0.5 mg/day), with drug treatment beginning 14 days postsurgery. At day 42, ORX animals exhibited nearly undetectable serum testosterone and 29% higher retroperitoneal fat mass than SHAM animals (P < 0.001). TEST produced a ∼380-415% higher serum testosterone than SHAM (P < 0.001) and completely prevented ORX-induced visceral fat gain (P < 0.001). Retroperitoneal fat was 21% and 16% lower in ORX + TEST than SHAM (P < 0.001) and ORX + TEST + AN (P = 0.007) animals, while serum estradiol (E2) was 62% (P = 0.024) and 87% (P = 0.010) higher, respectively. ORX stimulated lipogenic-related gene expression in visceral fat, demonstrated by ∼84-154% higher sterol regulatory element-binding protein-1 (SREBP-1, P = 0.023), fatty acid synthase (P = 0.01), and LPL (P < 0.001) mRNA than SHAM animals, effects that were completely prevented in ORX + TEST animals (P < 0.01 vs. ORX for all). Fatty acid synthase (P = 0.061, trend) and LPL (P = 0.043) mRNA levels were lower in ORX + TEST + AN than ORX animals and not different from SHAM animals but remained higher than in ORX + TEST animals (P < 0.05). In contrast, the ORX-induced elevation in SREBP-1 mRNA was not prevented by TEST + AN, with SREBP-1 expression remaining ∼117-171% higher than in SHAM and ORX + TEST animals (P < 0.01). Across groups, visceral fat mass and lipogenic-related gene expression were negatively associated with serum testosterone, but not E2 Aromatase inhibition constrains testosterone-induced visceral fat loss and the downregulation of key lipogenic genes at the mRNA level, indicating that E2 influences the visceral fat-sparing effects of testosterone.


Andrologia | 2017

Testosterone and trenbolone enanthate increase mature myostatin protein expression despite increasing skeletal muscle hypertrophy and satellite cell number in rodent muscle.

Vincent J. Dalbo; Michael D. Roberts; Christopher B. Mobley; Christopher Ballmann; Wesley C. Kephart; Carlton D. Fox; Vincent Santucci; Christine F. Conover; Luke A. Beggs; Alexander Balaez; F. J. Hoerr; Joshua F. Yarrow; Stephen E. Borst; D. T. Beck

The androgen‐induced alterations in adult rodent skeletal muscle fibre cross‐sectional area (fCSA), satellite cell content and myostatin (Mstn) were examined in 10‐month‐old Fisher 344 rats (n = 41) assigned to Sham surgery, orchiectomy (ORX), ORX + testosterone (TEST; 7.0 mg week−1) or ORX + trenbolone (TREN; 1.0 mg week−1). After 29 days, animals were euthanised and the levator ani/bulbocavernosus (LABC) muscle complex was harvested for analyses. LABC muscle fCSA was 102% and 94% higher in ORX + TEST and ORX + TREN compared to ORX (p < .001). ORX + TEST and ORX + TREN increased satellite cell numbers by 181% and 178% compared to ORX, respectively (p < .01), with no differences between conditions for myonuclear number per muscle fibre (p = .948). Mstn protein was increased 159% and 169% in the ORX + TEST and ORX + TREN compared to ORX (p < .01). pan‐SMAD2/3 protein was ~30–50% greater in ORX compared to SHAM (p = .006), ORX + TEST (p = .037) and ORX + TREN (p = .043), although there were no between‐treatment effects regarding phosphorylated SMAD2/3. Mstn, ActrIIb and Mighty mRNAs were lower in ORX, ORX + TEST and ORX + TREN compared to SHAM (p < .05). Testosterone and trenbolone administration increased muscle fCSA and satellite cell number without increasing myonuclei number, and increased Mstn protein levels. Several genes and signalling proteins related to myostatin signalling were differentially regulated by ORX or androgen therapy.


PLOS ONE | 2018

Effects of pharmacologic sclerostin inhibition or testosterone administration on soleus muscle atrophy in rodents after spinal cord injury.

Ean G. Phillips; Luke A. Beggs; Fan Ye; Christine F. Conover; Darren T. Beck; Dana M. Otzel; Payal Ghosh; Anna C F Bassit; Stephen E. Borst; Joshua F. Yarrow

Sclerostin is a circulating osteocyte-derived glycoprotein that negatively regulates Wnt-signaling after binding the LRP5/LRP6 co-receptors. Pharmacologic sclerostin inhibition produces bone anabolic effects after spinal cord injury (SCI), however, the effects of sclerostin-antibody (Scl-Ab) on muscle morphology remain unknown. In comparison, androgen administration produces bone antiresorptive effects after SCI and some, but not all, studies have reported that testosterone treatment ameliorates skeletal muscle atrophy in this context. Our purposes were to determine whether Scl-Ab prevents hindlimb muscle loss after SCI and compare the effects of Scl-Ab to testosterone enanthate (TE), an agent with known myotrophic effects. Male Sprague-Dawley rats aged 5 months received: (A) SHAM surgery (T8 laminectomy), (B) moderate-severe contusion SCI, (C) SCI+TE (7.0 mg/wk, im), or (D) SCI+Scl-Ab (25 mg/kg, twice weekly, sc). Twenty-one days post-injury, SCI animals exhibited a 31% lower soleus mass in comparison to SHAM, accompanied by >50% lower soleus muscle fiber cross-sectional area (fCSA) (p<0.01 for all fiber types). Scl-Ab did not prevent soleus atrophy, consistent with the relatively low circulating sclerostin concentrations and with the 91–99% lower LRP5/LRP6 gene expressions in soleus versus tibia (p<0.001), a tissue with known anabolic responsiveness to Scl-Ab. In comparison, TE partially prevented soleus atrophy and increased levator ani/bulbocavernosus (LABC) mass by 30–40% (p<0.001 vs all groups). The differing myotrophic responsiveness coincided with a 3-fold higher androgen receptor gene expression in LABC versus soleus (p<0.01). This study provides the first direct evidence that Scl-Ab does not prevent soleus muscle atrophy in rodents after SCI and suggests that variable myotrophic responses in rodent muscles after androgen administration are influenced by androgen receptor expression.

Collaboration


Dive into the Luke A. Beggs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren T. Beck

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Ye

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge