Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. A. García-Sevillano is active.

Publication


Featured researches published by M. A. García-Sevillano.


Analytical and Bioanalytical Chemistry | 2012

Biological responses related to agonistic, antagonistic and synergistic interactions of chemical species

Tamara García-Barrera; J.L. Gómez-Ariza; M. González-Fernández; F. Moreno; M. A. García-Sevillano; Veronica Gómez-Jacinto

AbstractThe fact that the essential or toxic character of elements is species specific has encouraged the development of analytical strategies for chemical speciation over the last twenty years; indeed, there are now a great number of them that provide very good performance. However, biological systems are exposed to a complex environment in which species of elements can interact in a synergistic/antagonistic fashion. Thus, the metabolism of trace elements cannot be considered in isolation. On the other hand, biological systems are dynamic, so it is necessary to study the trafficking of species of elements between organs, tissues or cell compartments in order to decipher the biochemical processes of the interactions in which they are involved. Although the application of liquid chromatography–inductively coupled plasma-based “metallomics” methods in combination with organic mass spectrometry can provide much-needed insight, new analytical strategies are required to really understand the role of species of elements in biological systems and the mechanisms of their interactions. In the present paper, the interactions of the most widely studied elements in this context (Se, Hg and As) are discussed, as well as other important interactions between different elements. FigureInteractions of chemical species in biology


Journal of Analytical Atomic Spectrometry | 2011

Size characterization of metal species in liver and brain from free-living ( Mus spretus ) and laboratory ( Mus Musculus ) mice by SEC-ICP-MS : Application to environmental contamination assessment

M. González-Fernández; M. A. García-Sevillano; R. Jara-Biedma; Tamara García-Barrera; A. Vioque; Juan López-Barea; Carmen Pueyo; J.L. Gómez-Ariza

The molecular mass distribution of various metals was evaluated in cell lysates obtained from liver and brain of mice using size-exclusion chromatography (Superdex-75) with ICP-MS detection. Free-living mice Mus spretus were collected in polluted and non-polluted sites from Donana National Park (southwest Spain) and SEC(HPLC)-ICP-MS was used to generate element specific chromatograms for essential metals (Cu and Zn) as well as toxic metals and metalloids (Cd, As, Pb). Different molecular mass fractions containing Cu are remarkably abundant in liver from the specimens captured in the polluted area. The fraction of about 7 kDa is especially important since it matches with a metallothionein I standard. Zn and Cd chromatograms also show peaks with similar molecular mass, but lower intensity. Analogous chromatograms from the non-contaminated site show a considerable depletion of these metal-containing biomolecules possibly due to low contamination. Chromatograms from the liver of laboratory mice Mus musculus (genetically close to Mus spretus) were also obtained for comparison revealing a great similarity with non contaminated samples. On the other hand, metal profiles from brain extracts do not reflect significant differences between polluted and clean areas in comparison with those obtained from liver of Mus spretus. Finally, the daily in vivo subcutaneous administration of Cd aqueous solution to Mus musculus during 10 days resulted in great rise of a Cd-peak of 7 KDa in the extract from the liver extract that matches with the Cd-methallothionein standard. Other Cd-binding molecules with higher molecular mass are also bioinduced by Cd exposure that probably constitutes a protection mechanism against this toxic element. The application for the first time of this metallomic approach to free-living mouse Mus spretus provides promising results for environmental stress assessment.


Journal of Proteomics | 2014

A combination of metallomics and metabolomics studies to evaluate the effects of metal interactions in mammals. Application to Mus musculus mice under arsenic/cadmium exposure.

M. A. García-Sevillano; Tamara García-Barrera; Francisco Navarro-Roldán; Zaida Montero-Lobato; José Luis Gómez-Ariza

UNLABELLED Arsenic and cadmium are toxic metals of environmental significance with harmful effects on man. To study the toxicological and biochemical effects of arsenic/cadmium in mammals a combined metallomic and metabolomic approach has been developed, complemented with the measurement of biochemical parameters in blood and histopathological evaluation of liver injury in mice Mus musculus under exposure to both xenobiotics. Size-exclusion chromatography (SEC) was combined with affinity chromatography (AF) and ICP-MS detection using species unspecific isotopic dilution analysis (SUID) to characterize the biological effects of As/Cd on selenium containing proteins in the bloodstream of exposed mice. On the other hand, both direct infusion mass spectrometry (DIMS) and gas chromatography-mass spectrometry (GC-MS) provided information about changes in metabolites caused by metals. The results show that As/Cd exposure produces interactions in the distribution of both toxics between organs and plasma of mice and antagonistic interactions with selenium containing proteins in the bloodstream. Interplay with essential metabolic pathways, such as energy metabolism and breakdown of membrane phospholipids were observed, which are more pronounced under As/Cd exposure. In addition, heavy metal and metalloid causes differential liver injury, manifested by steatosis (non-alcoholic fatty liver disease, NAFLD) and infiltration of blood cells into the space of Disse. BIOLOGICAL SIGNIFICANCE This work presents new contributions in the study of arsenic/cadmium interactions in mice Mus musculus under controlled exposure. With the combination of metallomic and metabolomic approaches the traffic of As and Cd from liver to kidney by means of blood was observed and excretion of As (as arsenic metabolites) or Cd (as MTCd) is inhibited with the simultaneous administration of As/Cd, and these toxic elements have important influence in the levels of seleno-proteins in the plasma. In addition, the metabolomic approach reveals inhibition of different metabolic cycles such as tricarboxylic acid and phospholipid degradation that causes membrane damage and apoptosis that is histopathologically confirmed. This article is part of a Special Issue entitled: Environmental and structural proteomics.


Journal of Chromatography A | 2013

Development of a new column switching method for simultaneous speciation of selenometabolites and selenoproteins in human serum

M. A. García-Sevillano; Tamara García-Barrera; J.L. Gómez-Ariza

A method for the simultaneous speciation of selenoproteins and selenometabolites in human serum has been developed on the basis of in series three dimensional chromatography: size exclusion, affinity and anion exchange high performance liquid chromatography (3D/SE-AF-AEC-HPLC), using different columns of each type and hyphenation to inductively coupled plasma-(quadrupole) mass spectrometry (ICP-qMS). The method allows the quantitative simultaneous analysis of selenoprotein P (SeP), extracellular glutathione peroxidase (eGPx), selenoalbumin (SeAlb), selenite and selenate in human serum using species-unspecific isotope dilution (SUID). The 3D chromatographic separation is proposed to remove typical spectral interferences in this matrix from chloride and bromide on (77)Se ((40)Ar(37)Cl), (80)Se ((79)Br(1)H) and (82)Se ((81)Br(1)H). In addition, a previous method based on 2D/SE-AF-HPLC is proposed as a simple alternative when low molecular mass selenium species are absent in the samples. The method is robust, reliable and fast with typical chromatographic runtime less than 35min. Detection limits are in the range of 0.2-1.3ng of Seg(-1). Method accuracy for determination of total protein-bound to Se was assessed by analyzing an human serum reference material (BCR-637) certified for total Se content and method reliability checked in samples of human serum providing results in good agreement with the total selenium concentration. In addition, the application of the method to commercial human serum and plasma reference materials for quality control analysis, certified for total Se, has provided, for the first time, indicative levels of selenium containing proteins in these samples.


Chemico-Biological Interactions | 2015

Biological interactions between mercury and selenium in distribution and detoxification processes in mice under controlled exposure. Effects on selenoprotein.

M. A. García-Sevillano; Gema Rodríguez-Moro; Tamara García-Barrera; F.J. Navarro; J.L. Gómez-Ariza

Antagonistic interactions between mercury (Hg) and selenium (Se), were evaluated in mouse (Mus musculus), as a mammalian model, in a series of controlled exposure experiments. The beneficial effect of Se against Hg toxicity involves a variety of biochemical and toxicological processes that have not been clarified yet. For this purpose, a metallomic workflow based on the use of size-exclusion chromatography (SEC) with inductively coupled plasma mass spectrometry (ICP-MS) detection was complemented with the speciation of selenoproteins and low molecular mass selenium species in serum and liver cytosolic extracts using a multidimensional approach based on SEC-AF-HPLC-ICPMS, using species-unspecific isotope dilution (SUID)-ICP-MS for selenium quantification. The results showed potential interactions between Hg/Se in organs and serum related to accumulation and detoxification processes, in addition to the effects of mercury on selenoproteins in hepatic cytosolic extracts and bloodstream when both elements are administrated at the same time. These results provide information about elements distribution, interactions and homeostasis and reveal the potential of metallomic approaches in exposure experiments.


Journal of Chromatography A | 2013

Speciation of arsenic in marine food (Anemonia sulcata) by liquid chromatography coupled to inductively coupled plasma mass spectrometry and organic mass spectrometry.

M. Contreras-Acuña; Tamara García-Barrera; M. A. García-Sevillano; J.L. Gómez-Ariza

Arsenic species have been investigated in Anemonia sulcata, which is frequently consumed food staple in Spain battered in wheat flour and fried with olive oil. Speciation in tissue extracts was carried out by anion/cation exchange chromatography with inductively coupled plasma mass spectrometry (HPLC-(AEC/CEC)-ICP-MS). Three methods for the extraction of arsenic species were investigated (ultrasonic bath, ultrasonic probe and focused microwave) and the optimal one was applied. Arsenic speciation was carried out in raw and cooked anemone and the dominant species are dimethylarsinic acid (DMA(V)) followed by arsenobetaine (AB), As(V), monomethylarsonic acid (MA(V)), tetramethylarsonium ion (TETRA) and trimethylarsine oxide (TMAO). In addition, arsenocholine (AsC), glyceryl phosphorylarsenocholine (GPAsC) and dimethylarsinothioic acid (DMAS) were identified by liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-MS). These results are interesting since GPAsC has been previously reported in marine organisms after experimental exposure to AsC, but not in natural samples. In addition, this paper reports for the first time the identification of DMAS in marine food.


Electrophoresis | 2015

Environmental metabolomics: Biological markers for metal toxicity.

M. A. García-Sevillano; Tamara García-Barrera; José Luis Gómez-Ariza

Environmental metabolomics is an emerging field referred to the application of metabolomics to characterize the interactions of living organisms with their environment. In this sense, the importance of monitoring the effects of toxic metals on living organisms has increased as a consequence of natural changes and anthropogenic activities that have led to an increase of toxic metal levels in terrestrial and aquatic ecosystems. For this purpose, the use of metabolomics based on MS to study metal toxicity is gaining importance in recent years. Environmental metabolomics can be used to: discover the mode of action (MOA) of toxic metals through controlled laboratory experiments; evaluate toxicity (biological adverse response to a substance), that may be useful in risk assessment; and develop new biomarkers (based in metabolome shifts discovered through controlled laboratory experiments) that may be applied in environmental biomonitoring (environmental realistic scenario). In this review, it is discussed how metabolomics based on MS can be applied to study metal toxicity, considering the most important hallmarks related to metabolomic experiments.


Journal of Proteomics | 2014

Omics technologies and their applications to evaluate metal toxicity in mice M. spretus as a bioindicator.

M. A. García-Sevillano; Tamara García-Barrera; Nieves Abril; Carmen Pueyo; Juan López-Barea; José Luis Gómez-Ariza

UNLABELLED Metals are important components of living organisms since many biological functions critically depend on their interaction with some metal in the cell. However, human activities have increased toxic metal levels in the terrestrial and aquatic ecosystems affecting living organisms. The impact of metals on cellular metabolism and global homeostasis has been traditionally assessed in free-living organisms by using conventional biomarkers; however, to obtain a global vision of metal toxicity mechanisms and the responses that metals elicit in the organisms, new analytical methodologies are needed. We review the use of omics approaches to assess the response of living organisms under metal stress illustrating the possibilities of different methodologies on the basis of our previous results. Most of this research has been based on free-living mice Mus spretus, a conventional bioindicator used to monitor metal pollution in Doñana National Park (DNP) (SW Spain), which is an important European biological reserve for migrating birds affected by agricultural, mining and industrial activities. The benefits of using omic techniques such as heterologous microarrays, proteomics methodologies (2-DE, iTRAQ®), metallomics, ionomics or metabolomics has been remarked; however, the complexity of these areas requires the integration of omics to achieve a comprehensive assessment of their environmental status. This article is part of a Special Issue entitled: Environmental and structural proteomics. BIOLOGICAL SIGNIFICANCE This work presents new contributions in the study of environmental metal pollution in terrestrial ecosystems using Mus spretus mice as bioindicator in Doñana National Park (SW Spain) and surroundings. In addition, it has been demonstrated that the integration of omics multi-analytical approaches provides a very suitable approach for the study of the biological response and metal interactions in exposed and free-living mice (Mus musculus and Mus spretus, respectively) under metal pollution.


Environmental Science & Technology | 2014

Use of metallomics and metabolomics to assess metal pollution in Doñana National Park (SW Spain).

M. A. García-Sevillano; Tamara García-Barrera; F.J. Navarro; Nieves Abril; Carmen Pueyo; Juan López-Barea; J.L. Gómez-Ariza

Monitoring organism exposure to heavy metals has acquired increased importance in the last decades. The mouse Mus spretus has been used to assess the biological response to contaminants in the relevant ecological area of Doñana National Park (DNP) and surrounding areas (SW Spain), where many migrating birds land for breeding and feeding every year. A metallomics approach, based on the characterization of metal biomolecules using size exclusion chromatography coupled with inductively coupled plasma-mass spectrometry (SEC-ICP-MS) and a metabolomics approach based on direct infusion to a mass spectrometer (DI-ESI-QTOF-MS) followed by a partial linear square-discriminant analysis (PLS-DA), were used to compare the biological responses of M. spretus living in three areas of DNP (the reference) and surrounding areas (El Partido and El Matochal). The activities of key antioxidant enzymes, such as Cu/Zn-SOD, Mn-SOD, CAT, GR, and guaiacol peroxidase, were also determined in connection with environmental contamination issues. The results show differences caused by the presence of metals in the ecosystem that affected to the levels of metals and metalloproteins, such as MT, Cu/Zn-SOD, or Mn-CA, the breakdown of membrane phospholipids, perturbations in metabolic pathways, related to energy metabolism, and oxidative stress.


Environmental Science & Technology | 2014

Heterologous microarray analysis of transcriptome alterations in Mus spretus mice living in an industrial settlement.

Nieves Abril; Julia Ruiz-Laguna; M. A. García-Sevillano; Ana M. Mata; José Luis Gómez-Ariza; Carmen Pueyo

This work demonstrates the successful application of a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to assess the biological effects of an industrial settlement on inhabitant Mus spretus mice. The transcriptomes of animals in the industrial settlement contrasted with those of specimens collected from a nearby protected ecosystem. Proteins encoded by the differentially expressed genes were broadly categorized into six main functional classes. Immune-associated genes were mostly induced and related to innate and acquired immunity and inflammation. Genes sorted into the stress-response category were mainly related to oxidative-stress tolerance and biotransformation. Metabolism-associated genes were mostly repressed and related to lipid metabolic pathways; these included genes that encoded 11 of the 20 cholesterol biosynthetic pathway enzymes. Crosstalk between members of different functional categories was also revealed, including the repression of serine-protease genes and the induction of protease-inhibitor genes to control the inflammatory response. Absolute quantification of selected transcripts was performed via RT-PCR to verify the microarray results and assess interindividual variability. Microarray data were further validated by immunoblotting and by cholesterol and protein-thiol oxidation level determinations. Reported data provide a broad impression of the biological consequences of residing in an industrial area.

Collaboration


Dive into the M. A. García-Sevillano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge