Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamara García-Barrera is active.

Publication


Featured researches published by Tamara García-Barrera.


Talanta | 2006

Comparative study of electrospray and photospray ionization sources coupled to quadrupole time-of-flight mass spectrometer for olive oil authentication

J.L. Gómez-Ariza; A. Arias-Borrego; Tamara García-Barrera; R. Beltrán

The use of fast and reliable analytical procedures for olive oil authentication is a priority demand due to its wide consumption and healthy benefits. Olive oil adulteration with other cheaper vegetable oils is a common practice that has to be detected and controlled. Rapid screening methods based on high resolution tandem mass spectrometry constitute today the option of choice due to sample handling simplicity and the elimination of the chromatographic step. The selection of the ionization source is critical and the comparison of their reliability necessary. The possibilities of the direct infusion electrospray ionization (ESI) and the recently introduced atmospheric pressure photospray ionization source (APPI), coupled to quadrupole time-of-flight (QqTOF), have been critically studied and compared to control olive oil adulteration. These techniques are very rapid (approximately 1min per sample) and have high discrimination power to elucidate key components in the edible oils studied (olive, hazelnut, sunflower and corn). Nevertheless, both sources are complementary, being APPI more sensitive for monoacyl- and diacylglycerol fragment ions and ESI for triacylglycerols. In addition, methods reproducibilitys are very high, especially for APPI source. Mixtures of olive oil with the others vegetable oils can be easily discriminated which has been tested by using principal components analysis (PCA) with both ESI-MS and APPI-MS spectra. Analogously, linear discriminant analysis (LDA) confirms methods reproducibility and detection of other oils used as adulterants, in particular hazelnut oil, which is especially difficult given its chemical similarity with olive oil.


Journal of Proteomics | 2014

Combination of metabolomic and phospholipid-profiling approaches for the study of Alzheimer's disease☆

Raúl González-Domínguez; Tamara García-Barrera; José Luis Gómez-Ariza

UNLABELLED Alzheimers disease is closely related to abnormal metabolism of phospholipids from neural membranes, so that the study of their dyshomeostasis could be of great interest for the discovery of potential biomarkers for diagnosis and disease monitoring. In this work, it has been developed a metabolomic multi-platform for the characterization of phospholipid alterations occurring in serum from Alzheimers disease patients. For this purpose, we performed a metabolomic screening by direct infusion mass spectrometry and profiling analysis by reversed phase ultra-high performance liquid chromatography with complementary detection by molecular and atomic mass spectrometry, which allowed combining the high-throughput capability of shotgun metabolomics and the targeted character of profiling approaches. Thus significant changes were detected in the levels of several molecular species of phosphatidylcholines, phosphatidylethanolamines, plasmenylcholines, plasmenylethanolamines and different classes of lysophospholipids, which provided a global vision of the possible factors triggering membrane breakdown. In this sense, alterations of phospholipids metabolism appears to have a multifactorial origin involving overactivation of phospholipases, increased anabolism of lysophospholipids, peroxisomal dysfunction, imbalances in the levels of saturated/unsaturated fatty acids contained in the structure of phospholipids and oxidative stress. BIOLOGICAL SIGNIFICANCE This work represents the first comprehensive characterization of serum phospholipids alterations in relation to Alzheimers disease, by combining shotgun metabolomics and phospholipids profiling through different analytical approaches.This article is part of a Special Issue entitled: Environmental and structural proteomics.


Journal of Pharmaceutical and Biomedical Analysis | 2014

Metabolomic study of lipids in serum for biomarker discovery in Alzheimer's disease using direct infusion mass spectrometry

Raúl González-Domínguez; Tamara García-Barrera; J.L. Gómez-Ariza

In this study, we demonstrated the potential of direct infusion mass spectrometry for the lipidomic characterization of Alzheimers disease. Serum samples were extracted for lipids recovery, and directly analyzed using an electrospray source. Metabolomic fingerprints were subjected to multivariate analysis in order to discriminate between groups of patients and healthy controls, and then some key-compounds were identified as possible markers of Alzheimers disease. Major differences were found in lipids, although some low molecular weight metabolites also showed significant changes. Thus, important metabolic pathways involved in neurodegeneration could be studied on the basis of these perturbations, such as membrane breakdown (phospholipids and diacylglycerols), oxidative stress (prostaglandins, imidazole and histidine), alterations in neurotransmission systems (oleamide and putrescine) and hyperammonaemia (guanidine and arginine). Moreover, it is noteworthy that some of these potential biomarkers have not been previously described for Alzheimers disease.


Electrophoresis | 2014

Metabolomic profiling of serum in the progression of Alzheimer's disease by capillary electrophoresis–mass spectrometry

Raúl González-Domínguez; Antonia García; Tamara García-Barrera; Coral Barbas; José Luis Gómez-Ariza

There is high interest in the discovery of early diagnostic biomarkers of Alzheimers disease, for which metabolomics exhibits a great potential. In this work, a metabolomic approach based on ultrafiltration and analysis by CE‐MS has been used to obtain representative fingerprints of polar metabolites from serum samples in order to distinguish between patients with Alzheimers disease, mild cognitive impairment, and healthy controls. By the use of partial least squares discriminant analysis it was possible to classify patients according to the disease stage and then identify potential markers. Significant increase was observed with progression of disease in levels of choline, creatinine, asymmetric dimethyl‐arginine, homocysteine‐cysteine disulfide, phenylalanyl‐phenylalanine, and different medium chain acylcarnitines. On the other hand, asparagine, methionine, histidine, carnitine, acetyl‐spermidine, and C5‐carnitine were reduced in these serum samples. In this way, multiple essential pathways were found implicated in the underlying pathology, such as oxidative stress or defects in energy metabolism. However, the most interesting results are related to the association of several vascular risk factors with Alzheimers disease.


Analyst | 2010

Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS

F. Moreno; Tamara García-Barrera; J.L. Gómez-Ariza

The simultaneous speciation of elements is of great concern, especially in the study of the interactions of species in living organisms. Here we report a method based on the coupling of HPLC-ICP-MS that is capable of separating and analyzing different selenium and mercury species (Se-methylselenocysteine, selenite, selenate, L-selenomethionine, D-selenomethionine, methylmercury and inorganic mercury). The proposed method uses two different mobile phases that are suitable for selenium and mercury speciation and leads to a successful determination of all the species in less than 27 min with good efficiency and resolution. The method was efficiently applied for simultaneous speciation of mercury and selenium in urine and in serum, the latter from umbilical cord samples. Selenocystine has been successfully identified in the former sample. Detection limits obtained were between 0.30 and 2.46 ng. Recovery studies of samples spiked with all species were performed to check the reliability of the method, and satisfactory recoveries (93-110%) were obtained in all cases. The relative standard deviations (RSDs) for species with ten replicate determinations of 80 μg L(-1) were between 4.5 and 9.2%. The proposed method offers a deeper insight into selenium and mercury interactions in the human body.


Biometals | 2014

Homeostasis of metals in the progression of Alzheimer's disease.

Raúl González-Domínguez; Tamara García-Barrera; José Luis Gómez-Ariza

In order to study the involvement of metals in the progression of Alzheimer’s disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer’s disease.


Journal of Pharmaceutical and Biomedical Analysis | 2015

Metabolite profiling for the identification of altered metabolic pathways in Alzheimer's disease

Raúl González-Domínguez; Tamara García-Barrera; José Luis Gómez-Ariza

Gas chromatography coupled to mass spectrometry is the most frequent tool for metabolomic profiling of low molecular weight metabolites. Its suitability in health survey is beyond doubt, given that primary metabolites involved in central pathways of metabolism are usually altered in diseases. The objective of this work is to investigate metabolic differences in serum between Alzheimers disease patients and healthy controls in order to elucidate pathological mechanisms underlying to disease. Alterations in levels of 23 metabolites were detected, including increased lactic acid, α-ketoglutarate, isocitric acid, glucose, oleic acid, adenosine and cholesterol, as well as decreased urea, valine, aspartic acid, pyroglutamate, glutamine, phenylalanine, asparagine, ornithine, pipecolic acid, histidine, tyrosine, palmitic and uric acid, tryptophan, stearic acid and cystine. Metabolic pathway analysis revealed the involvement of multiple affected pathways, such as energy deficiencies, oxidative stress, hyperammonemia, and others. Moreover, it is noteworthy that some of these compounds have not been previously described in AD research, such as α-ketoglutarate, isocitrate pipecolic acid, pyroglutamate and adenosine, confirming the potential of this metabolomic approach in the search of novel potential markers for early detection of Alzheimers disease.


Biochimica et Biophysica Acta | 2014

Region-specific metabolic alterations in the brain of the APP/PS1 transgenic mice of Alzheimer's disease

Raúl González-Domínguez; Tamara García-Barrera; Javier Vitorica; José Luis Gómez-Ariza

Alzheimers disease (AD) is the most common neurodegenerative disorder worldwide, but its etiology is still not completely understood. The identification of underlying pathological mechanisms is becoming increasingly important for the discovery of biomarkers and therapies, for which metabolomics presents a great potential. In this work, we studied metabolic alterations in different brain regions of the APP/PS1 mice by using a high-throughput metabolomic approach based on the combination of gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-mass spectrometry. Multivariate statistics showed that metabolomic perturbations are widespread, affecting mainly the hippocampus and the cortex, but are also present in regions not primarily associated with AD such as the striatum, cerebellum and olfactory bulbs. Multiple metabolic pathways could be linked to the development of AD-type disorders in this mouse model, including abnormal purine metabolism, bioenergetic failures, dyshomeostasis of amino acids and disturbances in membrane lipids, among others. Interestingly, region-specific alterations were observed for some of the potential markers identified, associated with abnormal fatty acid composition of phospholipids and sphingomyelins, or differential regulation of neurotransmitter amino acids (e.g. glutamate, glycine, serine, N-acetyl-aspartate), not previously described to our knowledge. Therefore, these findings could provide a new insight into brain pathology in Alzheimers disease.


Journal of Chromatography A | 2013

Simultaneous speciation and preconcentration of ultra trace concentrations of mercury and selenium species in environmental and biological samples by hollow fiber liquid phase microextraction prior to high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry

F. Moreno; Tamara García-Barrera; J.L. Gómez-Ariza

Nowadays, hollow fiber membrane extraction techniques are widely used due to the high enrichment factors obtained with many different types of analytes and samples. In this paper, we propose a new analytical method that allows the simultaneous extraction of methylmercury, inorganic mercury and Se(4+) and determination by high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The detection limits obtained are very low (110-230ng/L) with relative standard deviations below 15% for all the analytes and averaged recoveries in fortified samples in the range of 71-99%. The precision of the analytical method is very good which overcomes one of the most important shortcomings of membrane extraction techniques. Several variables were studied to get optimal extraction conditions for the analytes. This method has been validated with real world samples such as water (tap, river and estuarine) and human blood plasma.


Talanta | 2015

Application of a novel metabolomic approach based on atmospheric pressure photoionization mass spectrometry using flow injection analysis for the study of Alzheimer׳s disease

Raúl González-Domínguez; Tamara García-Barrera; José Luis Gómez-Ariza

The use of atmospheric pressure photoionization is not widespread in metabolomics, despite its considerable potential for the simultaneous analysis of compounds with diverse polarities. This work considers the development of a novel analytical approach based on flow injection analysis and atmospheric pressure photoionization mass spectrometry for rapid metabolic screening of serum samples. Several experimental parameters were optimized, such as type of dopant, flow injection solvent, and their flows, given that a careful selection of these variables is mandatory for a comprehensive analysis of metabolites. Toluene and methanol were the most suitable dopant and flow injection solvent, respectively. Moreover, analysis in negative mode required higher solvent and dopant flows (100 µl min(-1) and 40 µl min(-1), respectively) compared to positive mode (50 µl min(-1) and 20 µl min(-1)). Then, the optimized approach was used to elucidate metabolic alterations associated with Alzheimers disease. Thereby, results confirm the increase of diacylglycerols, ceramides, ceramide-1-phosphate and free fatty acids, indicating membrane destabilization processes, and reduction of fatty acid amides and several neurotransmitters related to impairments in neuronal transmission, among others. Therefore, it could be concluded that this metabolomic tool presents a great potential for analysis of biological samples, considering its high-throughput screening capability, fast analysis and comprehensive metabolite coverage.

Collaboration


Dive into the Tamara García-Barrera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge