Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Carey Satterfield is active.

Publication


Featured researches published by M. Carey Satterfield.


Amino Acids | 2009

Arginine metabolism and nutrition in growth, health and disease

Guoyao Wu; Fuller W. Bazer; Teresa A. Davis; Sung Woo Kim; Peng Li; J. Marc Rhoads; M. Carey Satterfield; Stephen B. Smith; Thomas E. Spencer; Yulong Yin

Abstractl-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or l-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.


Biology of Reproduction | 2006

Progesterone Regulation of Preimplantation Conceptus Growth and Galectin 15 (LGALS15) in the Ovine Uterus

M. Carey Satterfield; Fuller W. Bazer; Thomas E. Spencer

Abstract Peri-implantation conceptus (embryo/fetus and associated extraembryonic membranes) growth and development are primarily regulated by secretions from the uterus. This study investigated the effects of progesterone on preimplantation conceptus development and endometrial galectin 15 (LGALS15). Ewes received daily injections of either corn oil (CO) vehicle or 25 mg progesterone (P4) from 36 h postmating to hysterectomy. Treatment with P4 increased blastocyst diameter by 220% on Day 9 and advanced time of elongation of blastocysts to a filamentous conceptus on Day 12. Effects of P4 treatment on blastocyst development were blocked by administration of RU486, a progesterone receptor antagonist. Consistent with early elongation of blastocysts, interferon tau (IFNT) protein was about 50-fold greater in uterine flushes from Day 12 in ewes receiving P4 compared with those receiving CO. Expression of cathepsin L (CTSL) and radical S-adenosyl methionine domain containing 2 (RSAD2), both IFNT-stimulated genes, was increased in endometria of Day 12 P4-treated ewes. LGALS15 mRNA, expressed only in the endometrial luminal epithelium and superficial glands, was detected between Days 9 and 12 and was more abundant in ewes receiving P4 than in those receiving CO on both Days 9 and 12. RU486 treatment ablated P4 induction of LGALS15 mRNA in the endometrial epithelia. LGALS15 protein in uterine flushings was not different on Day 9 but tended to be greater in P4-treated ewes than in those receiving CO on Day 12. The advanced development of blastocysts in P4-treated ewes is hypothesized to involve early induction of specific genes in the endometrial epithelia, such as LGALS15, and undoubtedly components of uterine histotroph.


Antioxidants & Redox Signaling | 2012

Nutrition, Epigenetics, and Metabolic Syndrome

Junjun Wang; Zhenlong Wu; Defa Li; Ning Li; Scott V. Dindot; M. Carey Satterfield; Fuller W. Bazer; Guoyao Wu

SIGNIFICANCE Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones. RECENT ADVANCES DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases. Methylation, demethylation, acetylation, and deacetylation of histone proteins are performed by histone methyltransferase, histone demethylase, histone acetyltransferase, and histone deacetyltransferase, respectively. Histone activities are also influenced by phosphorylation, ubiquitination, ADP-ribosylation, sumoylation, and glycosylation. Metabolism of amino acids (glycine, histidine, methionine, and serine) and vitamins (B6, B12, and folate) plays a key role in provision of methyl donors for DNA and protein methylation. CRITICAL ISSUES Disruption of epigenetic mechanisms can result in oxidative stress, obesity, insulin resistance, diabetes, and vascular dysfunction in animals and humans. Despite a recognized role for epigenetics in fetal programming of metabolic syndrome, research on therapies is still in its infancy. Possible interventions include: 1) inhibition of DNA methylation, histone deacetylation, and microRNA expression; 2) targeting epigenetically disturbed metabolic pathways; and 3) dietary supplementation with functional amino acids, vitamins, and phytochemicals. FUTURE DIRECTIONS Much work is needed with animal models to understand the basic mechanisms responsible for the roles of specific nutrients in fetal and neonatal programming. Such new knowledge is crucial to design effective therapeutic strategies for preventing and treating metabolic abnormalities in offspring born to mothers with a previous experience of malnutrition.


Amino Acids | 2009

Amino acids and gaseous signaling.

Xilong Li; Fuller W. Bazer; Haijun Gao; Wenjuan S. Jobgen; Gregory A. Johnson; Peng Li; Jason R. McKnight; M. Carey Satterfield; Thomas E. Spencer; Guoyao Wu

Gases, such as nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) are known toxic pollutants in the air. However, they are now recognized as important signaling molecules synthesized in animals and humans from arginine, glycine (heme), and cysteine, respectively. At physiological levels, NO, CO, and SO2 activate guanylyl cyclase to generate cGMP which elicits a variety of responses (including relaxation of vascular smooth muscle cells, hemodynamics, neurotransmission, and cell metabolism) via cGMP-dependent protein kinases. H2S is also a crucial regulator of both neurological function and endothelium-dependent relaxation through cGMP-independent mechanisms involving stimulation of membrane KATP channels and intracellular cAMP signaling. Additionally, NO, CO, and H2S confer cytoprotective and immunomodulatory effects. Moreover, NH3 is a major product of amino acid catabolism and profoundly affects the function of neurons and the vasculature through glutamine-dependent inhibition of NO synthesis. Emerging evidence shows that amino acids are not only precursors for these endogenous gases, but are also regulators of their production in a cell-specific manner. Thus, recent advances on gaseous signaling have greatly expanded our basic knowledge of amino acid biochemistry and nutrition. These exciting discoveries will aid in the design of new nutritional and pharmacological means to prevent and treat major health problems related to developmental biology and nutrient metabolism, including intrauterine growth restriction, preterm birth, aging, neurological disorders, cancer, obesity, diabetes, and cardiovascular disease.


Journal of Nutrition | 2010

Parenteral Administration of l-Arginine Prevents Fetal Growth Restriction in Undernourished Ewes

Arantzatzu Lassala; Fuller W. Bazer; Timothy A. Cudd; Sujay Datta; D. H. Keisler; M. Carey Satterfield; Thomas E. Spencer; Guoyao Wu

Intrauterine growth restriction (IUGR) is a major health problem worldwide that currently lacks an effective therapeutic solution. This study was conducted with an ovine IUGR model to test the hypothesis that parenteral administration of l-arginine (Arg) is effective in enhancing fetal growth. Beginning on d 28 of gestation, ewes were fed a diet providing 100% (control-fed) or 50% (underfed) of NRC-recommended nutrient requirements. Between d 60 of gestation and parturition, underfed ewes received i.v. infusions of saline or 155 micromol Arg-HCl/kg body weight 3 times daily, whereas control-fed ewes received only saline. The birth weights of lambs from saline-infused underfed ewes were 23% lower (P < 0.01) than those of lambs from control-fed dams. Administration of Arg to underfed ewes increased (P < 0.01) concentrations of Arg (69%), ornithine (55%), proline (29%), methionine (37%), leucine (36%), isoleucine (35%), cysteine (19%), and FFA (43%) in maternal serum, decreased maternal circulating levels of ammonia (18%) and triglycerides (32%), and enhanced birth weights of lambs by 21% compared with saline-infused underfed ewes. There was no difference in birth weights of lambs between the control-fed and the Arg-infused underfed ewes. These novel results indicate that parenteral administration of Arg to underfed ewes prevented fetal growth restriction and provide support for its clinical use to ameliorate IUGR in humans. The findings also lay a new framework for studying cellular and molecular mechanisms responsible for the beneficial effects of Arg in regulating conceptus growth and development.


Journal of Nutrition | 2011

Parenteral Administration of L-Arginine Enhances Fetal Survival and Growth in Sheep Carrying Multiple Fetuses

Arantzatzu Lassala; Fuller W. Bazer; Timothy A. Cudd; Sujay Datta; D. H. Keisler; M. Carey Satterfield; Thomas E. Spencer; Guoyao Wu

The frequency of multiple fetuses has increased in human pregnancies due to assisted reproductive technologies. This translates into a greater proportion of premature and low-birth weight infants in the United States and worldwide. In addition, improvements in sheep breeding have resulted in new breeds with increased litter size but reduced fetal survival and birth weight. Currently, there are no treatments for preventing fetal growth restriction in humans or sheep (an established model for studying human fetal physiology) carrying multiple fetuses. In this work, Booroola Rambouillet ewes (FecB+/-) with 2-4 fetuses were fed a diet providing 100% of NRC-recommended nutrient requirements. Between d 100 and 121 of gestation, ewes received an i.v. bolus injection of either saline solution or 345 μmol arginine-HCl/kg body weight 3 times daily. The arginine treatment reduced (P < 0.05) the percentage of lambs born dead by 23% while increasing (P = 0.05) the percentage of lambs born alive by 59%. The i.v. administration of arginine enhanced (P < 0.05) the birth weights of quadruplets by 23% without affecting maternal body weight. The improved pregnancy outcome was associated with an increase in maternal plasma concentrations of arginine, ornithine, cysteine, and proline, as well as a decrease in circulating levels of ammonia and β-hydroxybutyrate. These novel results indicate that parenteral administration of arginine to prolific ewes ameliorated fetal mortality and growth retardation. Our findings provide support for experiments to assess the clinical use of arginine to enhance fetal growth and survival in women gestating multiple fetuses.


Biofactors | 2013

Nitric oxide and energy metabolism in mammals

Zhaolai Dai; Zhenlong Wu; Ying Yang; Junjun Wang; M. Carey Satterfield; Cynthia J. Meininger; Fuller W. Bazer; Guoyao Wu

Nitric oxide (NO) is a signaling molecule synthesized from L‐arginine by NO synthase in animals. Increasing evidence shows that NO regulates the mammalian metabolism of energy substrates and that these effects of NO critically depend on its concentrations at the reaction site and the period of exposure. High concentrations of NO (in the micromolar range) irreversibly inhibit complexes I, II, III, IV, and V in the mitochondrial respiratory chain, whereas physiological levels of NO (in the nanomolar range) reversibly reduce cytochomrome oxidase. Thus, NO reduces oxygen consumption by isolated mitochondria to various extents. In intact cells, through cGMP and AMP‐activated protein kinase signaling, physiological levels of NO acutely stimulate uptake and oxidation of glucose and fatty acids by skeletal muscle, heart, liver, and adipose tissue, while inhibiting the synthesis of glucose, glycogen and fat in the insulin‐sensitive tissues, and enhancing lipolysis in white adipocytes. Chronic effects of physiological levels of NO in vivo include stimulation of angiogenesis, blood flow, mitochondrial biogenesis, and brown adipocyte development. Modulation of NO‐mediated pathways through dietary supplementation with L‐arginine or its precursor L‐citrulline may provide an effective, practical strategy to prevent and treat metabolic syndrome, including obesity, diabetes, and dyslipidemia in mammals, including humans.


Physiological Genomics | 2009

Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation

M. Carey Satterfield; Gwonhwa Song; Kelli J. Kochan; Penny K. Riggs; Rebecca M. Simmons; Christine G. Elsik; David L. Adelson; Fuller W. Bazer; Huaijun Zhou; Thomas E. Spencer

Establishment of pregnancy in ruminants requires blastocyst growth to form an elongated conceptus that produces interferon tau, the pregnancy recognition signal, and initiates implantation. Blastocyst growth and development requires secretions from the uterine endometrium. An early increase in circulating concentrations of progesterone (P4) stimulates blastocyst growth and elongation in ruminants. This study utilized sheep as a model to identify candidate genes and regulatory networks in the endometrium that govern preimplantation blastocyst growth and development. Ewes were treated daily with either P4 or corn oil vehicle from day 1.5 after mating to either day 9 or day 12 of pregnancy when endometrium was obtained by hysterectomy. Microarray analyses revealed many differentially expressed genes in the endometria affected by day of pregnancy and early P4 treatment. In situ hybridization analyses revealed that many differentially expressed genes were expressed in a cell-specific manner within the endometrium. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to identify functional groups of genes and biological processes in the endometrium that are associated with growth and development of preimplantation blastocysts. Notably, biological processes affected by day of pregnancy and/or early P4 treatment included lipid biosynthesis and metabolism, angiogenesis, transport, extracellular space, defense and inflammatory response, proteolysis, amino acid transport and metabolism, and hormone metabolism. This transcriptomic data provides novel insights into the biology of endometrial function and preimplantation blastocyst growth and development in sheep.


Biology of Reproduction | 2008

Progesterone Regulates FGF10, MET, IGFBP1, and IGFBP3 in the Endometrium of the Ovine Uterus

M. Carey Satterfield; Kanako Hayashi; Gwonhwa Song; Sarah G. Black; Fuller W. Bazer; Thomas E. Spencer

Abstract Progesterone (P4) is unequivocally required to maintain a uterine environment conducive to pregnancy. This study investigated the effects of P4 treatment on expression of selected growth factors (fibroblast growth factor 7 [FGF7], FGF10, hepatocyte growth factor [HGF], and insulin-like growth factors [IGF1 and IGF2]), their receptors (MET, FGFR2(IIIB), and IGF1R), and IGF binding proteins (IGFBPs) in the ovine uterus. Ewes received daily injections of corn oil vehicle (CO) or 25 mg of P4 in vehicle from 36 h after mating (Day 0) to hysterectomy on Day 9 or Day 12. Another group received P4 to Day 8 and 75 mg of mifepristone (RU486, a P4 receptor antagonist) from Day 8 through Day 12. Endometrial FGF10 mRNA levels increased between Day 9 and Day 12 and in response to P4 on Day 9 in CO-treated ewes, which had larger blastocysts, and were substantially reduced in P4+RU486-treated ewes, which had no blastocysts on Day 12. Endometrial FGF7 or HGF mRNA levels were not affected by day or reduced by RU486 treatment, but MET mRNA levels were higher in P4-treated ewes on Day 9 and Day 12. Levels of IGF1, IGF2, and IGF1R mRNA in the endometria were not affected by early P4 treatment. Although stromal IGFBPs were unaffected by P4, levels of IGFBP1 and IGFBP3 mRNA in uterine luminal epithelia were increased substantially between Day 9 and Day 12 of pregnancy in CO-treated ewes and on Day 9 in early P4-treated ewes. Therefore, FGF10, MET, IGFBP1, and IGFBP3 are P4-regulated factors within the endometrium of the ovine uterus that have potential effects on endometrial function and peri-implantation blastocyst growth and development.


Amino Acids | 2013

Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep

M. Carey Satterfield; Kathrin A. Dunlap; D. H. Keisler; Fuller W. Bazer; Guoyao Wu

Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and l-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or l-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal l-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that l-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.

Collaboration


Dive into the M. Carey Satterfield's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge