M. Cecilia Lopez
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Cecilia Lopez.
Journal of Experimental Medicine | 2011
Wenzhong Xiao; Michael Mindrinos; Junhee Seok; Joseph Cuschieri; Alex G. Cuenca; Hong Gao; Douglas L. Hayden; Laura Hennessy; Ernest E. Moore; Joseph P. Minei; Paul E. Bankey; Jeffrey L. Johnson; Jason L. Sperry; Avery B. Nathens; Timothy R. Billiar; Michael A. West; Bernard H. Brownstein; Philip H. Mason; Henry V. Baker; Celeste C. Finnerty; Marc G. Jeschke; M. Cecilia Lopez; Matthew B. Klein; Richard L. Gamelli; Nicole S. Gibran; Brett D. Arnoldo; Weihong Xu; Yuping Zhang; Steven E. Calvano; Grace P. McDonald-Smith
Critical injury in humans induces a genomic storm with simultaneous changes in expression of innate and adaptive immunity genes.
Journal of Virology | 2007
Rebecca L. Skalsky; Mark A. Samols; Karlie Plaisance; Isaac W. Boss; Alberto Riva; M. Cecilia Lopez; Henry V. Baker; Rolf Renne
ABSTRACT MicroRNAs (miRNAs) are small noncoding RNAs that posttranscriptionally regulate gene expression by binding to 3′-untranslated regions (3′UTRs) of target mRNAs. Kaposis sarcoma-associated herpesvirus (KSHV), a virus linked to malignancies including primary effusion lymphoma (PEL), encodes 12 miRNA genes, but only a few regulatory targets are known. We found that KSHV-miR-K12-11 shares 100% seed sequence homology with hsa-miR-155, an miRNA frequently found to be up-regulated in lymphomas and critically important for B-cell development. Based on this seed sequence homology, we hypothesized that both miRNAs regulate a common set of target genes and, as a result, could have similar biological activities. Examination of five PEL lines showed that PELs do not express miR-155 but do express high levels of miR-K12-11. Bioinformatic tools predicted the transcriptional repressor BACH-1 to be targeted by both miRNAs, and ectopic expression of either miR-155 or miR-K12-11 inhibited a BACH-1 3′UTR-containing reporter. Furthermore, BACH-1 protein levels are low in cells expressing either miRNA. Gene expression profiling of miRNA-expressing stable cell lines revealed 66 genes that were commonly down-regulated. For select genes, miRNA targeting was confirmed by reporter assays. Thus, based on our in silico predictions, reporter assays, and expression profiling data, miR-K12-11 and miR-155 regulate a common set of cellular targets. Given the role of miR-155 during B-cell maturation, we speculate that miR-K12-11 may contribute to the distinct developmental phenotype of PEL cells, which are blocked in a late stage of B-cell development. Together, these findings indicate that KSHV miR-K12-11 is an ortholog of miR-155.
Molecular Cancer | 2008
Jan S. Moreb; Henry V. Baker; Lung-Ji Chang; Maria Amaya; M. Cecilia Lopez; Blanca Ostmark; Wayne Chou
BackgroundAldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied.MethodsWe have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA.ResultsWe confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by ≥ 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways.ConclusionThese molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer.
The Journal of Neuroscience | 2004
Margaret J. Velardo; Corinna Burger; Philip R. Williams; Henry V. Baker; M. Cecilia Lopez; Thomas H. Mareci; Todd E. White; Nicholas Muzyczka; Paul J. Reier
Spinal cord injury (SCI) induces a progressive pathophysiology affecting cell survival and neurological integrity via complex and evolving molecular cascades whose interrelationships are not fully understood. The present experiments were designed to: (1) determine potential functional interactions within transcriptional expression profiles obtained after a clinically relevant SCI and (2) test the consistency of transcript expression after SCI in two genetically and immunologically diverse rat strains characterized by differences in T cell competence and associated inflammatory responses. By interrogating Affymetrix U34A rat genome GeneChip microarrays, we defined the transcriptional expression patterns in midcervical contusion lesion sites between 1 and 90 d postinjury of athymic nude (AN) and Sprague Dawley (SD) strains. Stringent statistical analyses detected significant changes in 3638 probe sets, with 80 genes differing between the AN and SD groups. Subsequent detailed functional categorization of these transcripts unveiled an overall tissue remodeling response that was common to both strains. The functionally organized gene profiles were temporally distinct and correlated with repair indices observed microscopically and by magnetic resonance microimaging. Our molecular and anatomical observations have identified a novel, longitudinal perspective of the post-SCI response, namely, that of a highly orchestrated tissue repair and remodeling repertoire with a prominent cutaneous wound healing signature that is conserved between two widely differing rat strains. These results have significant bearing on the continuing development of cellular and pharmacological therapeutics directed at tissue rescue and neuronal regeneration in the injured spinal cord.
Cellular Microbiology | 2005
Martin Handfield; Jeffrey J. Mans; Gaolin Zheng; M. Cecilia Lopez; Song Mao; Ann Progulske-Fox; Giri Narasimhan; Henry V. Baker; Richard J. Lamont
Transcriptional profiling, bioinformatics, statistical and ontology tools were used to uncover and dissect genes and pathways of human gingival epithelial cells that are modulated upon interaction with the periodontal pathogens Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Consistent with their biological and clinical differences, the common core transcriptional response of epithelial cells to both organisms was very limited, and organism‐specific responses predominated. A large number of differentially regulated genes linked to the P53 apoptotic network were found with both organisms, which was consistent with the pro‐apoptotic phenotype observed with A. actinomycetemcomitans and anti‐apoptotic phenotype of P. gingivalis. Furthermore, with A. actinomycetemcomitans, the induction of apoptosis did not appear to be Fas‐ or TNFα‐mediated. Linkage of specific bacterial components to host pathways and networks provided additional insight into the pathogenic process. Comparison of the transcriptional responses of epithelial cells challenged with parental P. gingivalis or with a mutant of P. gingivalis deficient in production of major fimbriae, which are required for optimal invasion, showed major expression differences that reverberated throughout the host cell transcriptome. In contrast, gene ORF859 in A. actinomycetemcomitans, which may play a role in intracellular homeostasis, had a more subtle effect on the transcriptome. These studies help unravel the complex and dynamic interactions between host epithelial cells and endogenous bacteria that can cause opportunistic infections.
Infection and Immunity | 2007
Yoshiaki Hasegawa; Jeffrey J. Mans; Song Mao; M. Cecilia Lopez; Henry V. Baker; Martin Handfield; Richard J. Lamont
ABSTRACT Transcriptional profiling and ontology tools were utilized to define the biological pathways of gingival epithelial cells modulated by coculture with the oral commensal Streptococcus gordonii and the opportunistic commensal Fusobacterium nucleatum. Overall, F. nucleatum and S. gordonii perturbed the gingival epithelial cell transcriptome much less significantly than the oral pathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans perturbed the transcriptome, indicating that there was a greater degree of host adaptation by the commensal species (M. Handfield, J. J. Mans, G. Zheng, M. C. Lopez, S. Mao, A. Progulske-Fox, G. Narasimhan, H. V. Baker, and R. J. Lamont, Cell. Microbiol. 7:811-823, 2005). The biological pathways significantly impacted by F. nucleatum and S. gordonii included the mitogen-activated protein kinase (MAPK) and Toll-like receptor signaling pathways. Differential regulation of GADD45 and DUSP4, key components of the MAPK pathway, was confirmed at the protein level by Western blotting. Modulation of the MAPK pathway is likely to affect host cell proliferation and differentiation. In addition, both the MAPK and Toll-like receptor pathways ultimately converge on cytokine gene expression. An enzyme-linked immunosorbent assay of secreted interleukin-6 (IL-6) and IL-8 demonstrated that F. nucleatum induced production of these cytokines, whereas S. gordonii inhibited secretion from the epithelial cells. Stimulation of secretion of proinflammatory cytokines from epithelial cells may reflect the invasive phenotype of F. nucleatum and contribute to the greater pathogenic potential of F. nucleatum than of S. gordonii.
Neurobiology of Learning and Memory | 2007
Corinna Burger; M. Cecilia Lopez; Joyce A. Feller; Henry V. Baker; Nicholas Muzyczka; Ronald J. Mandel
Aged rats display a broad range of behavioral performance in spatial learning. The aim of this study was to identify candidate genes that are associated with learning and memory impairments. We first categorized aged-superior learners and age learning-impaired rats based on their performance in the Morris water maze (MWM) and then isolated messenger RNA from the CA1 hippocampal region of each animal to interrogate Affymetrix microarrays. Microarray analysis identified a set of 50 genes that was transcribed differently in aged-superior learners that had successfully learned the spatial strategy in the MWM compared to aged learning-impaired animals that were unable to learn and a variety of groups designed to control for all non-learning aspects of exposure to the water maze paradigm. A detailed analysis of the navigation patterns of the different groups of animals during acquisition and probe trials of the MWM task was performed. Young animals used predominantly an allocentric (spatial) search strategy and aged-superior learners appeared to use a combination of allocentric and egocentric (response) strategies, whereas aged-learning impaired animals displayed thigmotactic behavior. The significant 50 genes that we identified were tentatively classified into four groups based on their putative role in learning: transcription, synaptic morphology, ion conductivity and protein modification. Thus, this study has potentially identified a set of genes that are responsible for the learning impairments in aged rats. The role of these genes in the learning impairments associated with aging will ultimately have to be validated by manipulating gene expression in aged rats. Finally, these 50 genes were functioning in the context of an aging CA1 region where over 200 genes was found to be differentially expressed compared to a young CA1.
Journal of Virology | 2009
Eric Bartee; Mohamed R. Mohamed; M. Cecilia Lopez; Henry V. Baker; Grant McFadden
ABSTRACT Tumor necrosis factor (TNF) and members of the interferon (IFN) family have been shown to independently inhibit the replication of a variety of viruses. In addition, previous reports have shown that treatment with various combinations of these antiviral cytokines induces a synergistic antiviral state that can be significantly more potent than addition of any of these cytokines alone. The mechanism of this cytokine synergy and its effects on global gene expression, however, are not well characterized. Here, we use DNA microarray analysis to demonstrate that treatment of uninfected primary human fibroblasts with TNF plus IFN-β induces a distinct synergistic state characterized by significant perturbations of several hundred genes which are coinduced by the individual cytokines alone, as well as the induction of more than 850 novel host cell genes. This synergy is mediated directly by the two ligands, not by intermediate secreted factors, and is necessary and sufficient to completely block the productive replication and spread of myxoma virus in human fibroblasts. In contrast, the replication of two other poxviruses, vaccinia virus and tanapox virus, are only partially inhibited in these cells by the synergistic antiviral state, whereas the spread of both of these viruses to neighboring cells was efficiently blocked. Taken together, our data indicate that the combination of TNF and IFN-β induces a novel synergistic antiviral state that is highly distinct from that induced by either cytokine alone.
Critical Care Medicine | 2013
Alex G. Cuenca; Lori F. Gentile; M. Cecilia Lopez; Ricardo Ungaro; Huazhi Liu; Wenzhong Xiao; Junhee Seok; Michael Mindrinos; Darwin N. Ang; Tezcan Ozrazgat Baslanti; Azra Bihorac; Philip A. Efron; Joseph Cuschieri; H. Shaw Warren; Ronald G. Tompkins; Ronald V. Maier; Henry V. Baker; Lyle L. Moldawer
Objective:Many patients have complicated recoveries following severe trauma due to the development of organ injury. Physiological and anatomical prognosticators have had limited success in predicting clinical trajectories. We report on the development and retrospective validation of a simple genomic composite score that can be rapidly used to predict clinical outcomes. Design:Retrospective cohort study. Setting:Multi-institutional level 1 trauma centers. Patients:Data were collected from 167 severely traumatized (injury severity score >15) adult (18–55 yr) patients. Methods:Microarray-derived genomic data obtained from 167 severely traumatized patients over 28 days were assessed for differences in messenger RNA abundance among individuals with different clinical trajectories. Once a set of genes was identified based on differences in expression over the entire study period, messenger RNA abundance from these subjects obtained in the first 24 hours was analyzed in a blinded fashion using a rapid multiplex platform, and genomic data reduced to a single metric. Results:From the existing genomic dataset, we identified 63 genes whose leukocyte expression differed between an uncomplicated and complicated clinical outcome over 28 days. Using a multiplex approach that can quantitate messenger RNA abundance in less than 12 hours, we reassessed total messenger RNA abundance from the first 24 hours after trauma and reduced the genomic data to a single composite score using the difference from reference. This composite score showed good discriminatory capacity to distinguish patients with a complicated outcome (area under a receiver–operator curve, 0.811; p <0.001). This was significantly better than the predictive power of either Acute Physiology and Chronic Health Evaluation II or new injury severity score scoring systems. Conclusions:A rapid genomic composite score obtained in the first 24 hours after trauma can retrospectively identify trauma patients who are likely to develop complicated clinical trajectories. A novel platform is described in which this genomic score can be obtained within 12 hours of blood collection, making it available for clinical decision making.
Neurobiology of Learning and Memory | 2008
Corinna Burger; M. Cecilia Lopez; Henry V. Baker; Ronald J. Mandel; Nicholas Muzyczka
We have previously described the transcriptional changes that occur in the hippocampal CA1 field of aged rats following a Morris Water Maze (MWM) training paradigm. In this report we proceed with the analysis of the dentate region from the same animals. Animals were first identified as age learning-impaired or age-superior learners when compared to young rats based on their performance in the MWM. Messenger RNA was isolated from the dentate gyrus of each animal to interrogate Affymetrix RAE 230A rat genome microarrays. Microarray profiling identified 1129 genes that were differentially expressed between aged and young rats as a result of aging, and independent of their behavioral training (p<0.005). We applied Ingenuity Pathway Analysis (IPA) algorithms to identify the significant biological processes underlying age-related changes in the dentate gyrus. The most significant functions, as calculated by IPA, included cell movement, cell growth and proliferation, nervous system development and function, cellular assembly and organization, cell morphology and cell death. These significant processes are consistent with age-related changes in neurogenesis, and the neurogenic markers were generally found to be downregulated in senescent animals. In addition, statistical analysis of the different experimental groups of aged animals recognized 85 genes (p<0.005) that were different in the dentate gyrus of aged rats that had learned the MWM when compared to learning impaired and a number of controls for stress, exercise and non-spatial learning. The list of learning-related genes expressed in the dentate adds to the set of genes we previously described in the CA1 region. This long list of genes constitutes a starting tool to elucidating the molecular pathways involved in learning and memory formation.