Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. D. Knudson is active.

Publication


Featured researches published by M. D. Knudson.


Physics of Plasmas | 2005

Pulsed-power-driven high energy density physics and inertial confinement fusion research

M. Keith Matzen; M. A. Sweeney; R. G. Adams; J. R. Asay; J. E. Bailey; Guy R. Bennett; D.E. Bliss; Douglas D. Bloomquist; T. A. Brunner; Robert B. Campbell; Gordon Andrew Chandler; C.A. Coverdale; M. E. Cuneo; Jean-Paul Davis; C. Deeney; Michael P. Desjarlais; G. L. Donovan; Christopher Joseph Garasi; Thomas A. Haill; C. A. Hall; D.L. Hanson; M. J. Hurst; B. Jones; M. D. Knudson; R. J. Leeper; R.W. Lemke; M.G. Mazarakis; D. H. McDaniel; T.A. Mehlhorn; T. J. Nash

The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state ...


Review of Scientific Instruments | 2001

Experimental configuration for isentropic compression of solids using pulsed magnetic loading

C. A. Hall; J. R. Asay; M. D. Knudson; W. A. Stygar; Rick B. Spielman; T. D. Pointon; David Barton Reisman; Arthur Toor; R. Cauble

A capability to produce quasi-isentropic compression of solids using pulsed magnetic loading on the Z accelerator has recently been developed and demonstrated [C. A. Hall, Phys. Plasmas 7, 2069 (2000)]. This technique allows planar, continuous compression of materials to stresses approaching 1.5 Mbar. In initial stages of development, the experimental configuration used a magnetically loaded material cup or disk as the sample of interest pressed into a conductor. This installation caused distortions that limited the ability to attach interferometer windows or other materials to the rear of the sample. In addition, magnetic pressure was not completely uniform over sample dimensions of interest. A new modular configuration is described that improves the uniformity of loading over the sample surface, allows materials to be easily attached to the magnetically loaded sample, and improves the quality of data obtained. Electromagnetic simulations of the magnetic field uniformity for this new configuration will a...


Science | 2008

Shock-Wave Exploration of the High-Pressure Phases of Carbon

M. D. Knudson; Michael P. Desjarlais; Daniel H. Dolan

The high–energy density behavior of carbon, particularly in the vicinity of the melt boundary, is of broad scientific interest and of particular interest to those studying planetary astrophysics and inertial confinement fusion. Previous experimental data in the several hundred gigapascal pressure range, particularly near the melt boundary, have only been able to provide data with accuracy capable of qualitative comparison with theory. Here we present shock-wave experiments on carbon (using a magnetically driven flyer-plate technique with an order of magnitude improvement in accuracy) that enable quantitative comparison with theory. This work provides evidence for the existence of a diamond-bc8-liquid triple point on the melt boundary.


Journal of Applied Physics | 2001

Magnetically driven isentropic compression experiments on the Z accelerator

David Barton Reisman; Arthur Toor; R. Cauble; C. A. Hall; J. R. Asay; M. D. Knudson; Michael D. Furnish

Isentropic compression experiments (ICE) have been performed on the Z accelerator facility at Sandia National Laboratory. We describe the experimental design that used large magnetic fields to slowly compress samples to pressures in excess of 400 kbar. Velocity wave profile measurements were analyzed to yield isentropic compression equations of state (EOS). The method can also yield material strength properties. We describe magnetohydronamic simulations and results of experiments that used the “square short” configuration to compress copper and discuss ICE EOS experiments that have been performed with this method on tantalum, molybdenum, and beryllium.


Journal of Applied Physics | 2003

Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique

M. D. Knudson; R.W. Lemke; Dennis Brewster Hayes; C. A. Hall; C. Deeney; J. R. Asay

Hugoniot measurements were performed on aluminum (6061-T6) in the stress range of 100–500 GPa (1–5 Mbar) using a magnetically accelerated flyer plate technique. This method of flyer plate launch utilizes the high currents, and resulting magnetic fields produced at the Sandia Z Accelerator to accelerate macroscopic aluminum flyer plates (approximately 12×25 mm in lateral dimension and ∼300 μm in thickness) to velocities in excess of 20 km/s. This technique was used to perform plate-impact shock-wave experiments on aluminum to determine the high-stress equation of state (EOS). Using a near-symmetric impact method, Hugoniot measurements were obtained in the stress range of 100–500 GPa. The results of these experiments are in excellent agreement with previously reported Hugoniot measurements of aluminum in this stress range. The agreement at lower stress, where highly accurate gas gun data exist, establishes the magnetically accelerated flyer plate technique as a suitable method for generating EOS data. Furth...


Science | 2015

Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

M. D. Knudson; Michael P. Desjarlais; Andreas Becker; R.W. Lemke; Kyle Robert Cochrane; M. E. Savage; D.E. Bliss; Thomas R. Mattsson; R. Redmer

Driving liquid deuterium into metal Quick and powerful compression can force materials to change their properties dramatically. Knudson et al. compressed liquid deuterium to extreme temperatures and pressures using high-energy magnetic pulses at the Sandia Z-machine (see the Perspective by Ackland). Deuterium began to reflect like a mirror during compression, as the electrical conductivity sharply increased. The observed conditions for metallization of deuterium and hydrogen help us to build theoretical models for the universes most abundant element. This a our understanding of the internal layering of gas giant planets such as Jupiter and Saturn. Science, this issue p. 1455; see also p. 1429 Magnetic compression drives an insulator-to-metal transition in dense liquid deuterium. [Also see Perspective by Ackland] Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.


Physics of Plasmas | 2005

Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator

Jean-Paul Davis; C. Deeney; M. D. Knudson; R.W. Lemke; T.D. Pointon; D.E. Bliss

A technique has previously been developed on the Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] to generate ramped compression waves in condensed matter for equation-of-state studies [C. A. Hall, J. R. Asay, M. D. Knudson, W. A. Stygar, R. B. Spielman, T. D. Pointon, D. B. Reisman, A. Toor, and R. C. Cauble, Rev. Sci. Instrum. 72, 3587 (2001)] by using the Lorentz force to push on solid electrodes rather than to drive a Z pinch. This technique has now been extended to multimegabar pressures by shaping the current pulse on Z to significantly increase the sample thickness through which the compression wave can propagate without forming a shock. Shockless, free-surface velocity measurements from multiple sample thicknesses on a single experiment can be analyzed using a backward integration technique [D. B. Hayes, C. A. Hall, J. R. Asay, and M. D. Knudson, J. Appl. Phys. 94, 2331 (2003)] to extract an isentropic loading curve. At very high pressures, the accuracy of this method is dominat...


Journal of Applied Physics | 2005

Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments

R.W. Lemke; M. D. Knudson; D.E. Bliss; Kyle Robert Cochrane; Jean-Paul Davis; A. A. Giunta; H.C. Harjes; Stephen A. Slutz

The intense magnetic field produced by the 20 MA Z accelerator is used as an impulsive pressure source to accelerate metal flyer plates to high velocity for the purpose of performing plate impact, shock wave experiments. This capability has been significantly enhanced by the recently developed pulse shaping capability of Z, which enables tailoring the rise time to peak current for a specific material and drive pressure to avoid shock formation within the flyer plate during acceleration. Consequently, full advantage can be taken of the available current to achieve the maximum possible magnetic drive pressure. In this way, peak magnetic drive pressures up to 490 GPa have been produced, which shocklessly accelerated 850μm aluminum (6061-T6) flyer plates to peak velocities of 34km∕s. We discuss magnetohydrodynamic (MHD) simulations that are used to optimize the magnetic pressure for a given flyer load and to determine the shape of the current rise time that precludes shock formation within the flyer during ac...


Physics of Plasmas | 2003

Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates

R.W. Lemke; M. D. Knudson; Allen C. Robinson; Thomas A. Haill; K.W. Struve; J. R. Asay; T.A. Mehlhorn

The intense magnetic field generated by the 20 megaampere Z machine [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] at Sandia National Laboratories is being used as a pressure source for material science studies. An application we have studied in great detail involves using the intense magnetic field to accelerate flyer plates (small metal disks) to very high velocities (>20 km/s) for use in shock loading experiments. We have used two-dimensional (2D) magnetohydrodynamic (MHD) simulation to investigate the physics of accelerating flyer plates using multi-megabar magnetic drive pressures. A typical shock physics load is comprised of conducting electrodes that are highly compressible at multi-megabar pressures. Electrode deformation that occurs during the rise time of the current pulse causes significant inductance increase, which reduces the peak current (drive pressure) relative to a static geometry. This important dynamic effect is modeled self-consistently by driving the MHD simulation with an acc...


Physics of Plasmas | 2012

Electrothermal instability growth in magnetically driven pulsed power liners

Kyle Peterson; Daniel Brian Sinars; Edmund P. Yu; Mark Herrmann; Michael Edward Cuneo; Stephen A. Slutz; Ian Craig Smith; Briggs W. Atherton; M. D. Knudson; Charles Nakhleh

This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.

Collaboration


Dive into the M. D. Knudson's collaboration.

Top Co-Authors

Avatar

R.W. Lemke

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

J. R. Asay

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Davis

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. A. Hall

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

J. E. Bailey

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

C. Deeney

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

D.L. Hanson

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

D.E. Bliss

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

M. R. Martin

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge